1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
#ifndef Arduino_h
#define Arduino_h
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include "binary.h"
#include "pins_arduino.h"
#ifdef __cplusplus
extern "C"{
#endif
#define HIGH 0x1
#define LOW 0x0
#define INPUT 0x0
#define OUTPUT 0x1
#define true 0x1
#define false 0x0
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define TWO_PI 6.283185307179586476925286766559
#define DEG_TO_RAD 0.017453292519943295769236907684886
#define RAD_TO_DEG 57.295779513082320876798154814105
#define SERIAL 0x0
#define DISPLAY 0x1
#define LSBFIRST 0
#define MSBFIRST 1
#define CHANGE 1
#define FALLING 2
#define RISING 3
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define INTERNAL1V1 2
#define INTERNAL2V56 3
#else
#define INTERNAL 3
#endif
#define DEFAULT 1
#define EXTERNAL 0
// undefine stdlib's abs if encountered
#ifdef abs
#undef abs
#endif
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
#define radians(deg) ((deg)*DEG_TO_RAD)
#define degrees(rad) ((rad)*RAD_TO_DEG)
#define sq(x) ((x)*(x))
#define interrupts() sei()
#define noInterrupts() cli()
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
#define microsecondsToClockCycles(a) ( ((a) * (F_CPU / 1000L)) / 1000L )
#define lowByte(w) ((uint8_t) ((w) & 0xff))
#define highByte(w) ((uint8_t) ((w) >> 8))
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))
typedef unsigned int word;
#define bit(b) (1UL << (b))
typedef uint8_t boolean;
typedef uint8_t byte;
void init(void);
void pinMode_lookup(uint8_t, uint8_t);
void digitalWrite_lookup(uint8_t, uint8_t);
int digitalRead_lookup(uint8_t);
int analogRead(uint8_t);
void analogReference(uint8_t mode);
void analogWrite(uint8_t, int);
unsigned long millis(void);
unsigned long micros(void);
void delay(unsigned long);
void delayMicroseconds(unsigned int us);
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout);
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val);
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder);
void attachInterrupt(uint8_t, void (*)(void), int mode);
void detachInterrupt(uint8_t);
void setup(void);
void loop(void);
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
#define analogInPinToBit(P) (P)
INLINED uint8_t digitalPinToPort(uint8_t pin) {
if (__builtin_constant_p(pin))
return inlined_digitalPinToPort(pin);
else
return pgm_read_byte( digital_pin_to_port_PGM + pin );
}
INLINED uint8_t digitalPinToBitMask(uint8_t pin) {
if (__builtin_constant_p(pin))
return inlined_digitalPinToBitMask(pin);
else
return pgm_read_byte( digital_pin_to_bit_mask_PGM + pin );
}
INLINED uint8_t digitalPinToTimer(uint8_t pin) {
if (__builtin_constant_p(pin))
return inlined_digitalPinToTimer(pin);
else
return pgm_read_byte( digital_pin_to_timer_PGM + pin );
}
INLINED volatile uint8_t *portOutputRegister(uint8_t index) {
if (__builtin_constant_p(index))
return inlined_portOutputRegister(index);
else
return (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + index ) );
}
INLINED volatile uint8_t* portInputRegister(uint8_t index) {
if (__builtin_constant_p(index))
return inlined_portInputRegister(index);
else
return (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + index) );
}
INLINED volatile uint8_t* portModeRegister(uint8_t index) {
if (__builtin_constant_p(index))
return inlined_portModeRegister(index);
else
return (volatile uint8_t *)( pgm_read_word( port_to_mode_PGM + index) );
}
/*
* Check if a given pin requires locking.
* When accessing lower 32 IO ports we can use SBI/CBI instructions, which are atomic. However
* other IO ports require load+modify+store and we need to make them atomic by disabling
* interrupts.
*/
INLINED int portWriteNeedsLocking(uint8_t pin)
{
/* SBI/CBI instructions only work on lower 32 IO ports */
if (inlined_portOutputRegister(inlined_digitalPinToPort(pin)) > (volatile uint8_t*)&_SFR_IO8(0x1F)) {
return 1;
}
return 0;
}
INLINED int portModeNeedsLocking(uint8_t pin)
{
/* SBI/CBI instructions only work on lower 32 IO ports */
if (inlined_portModeRegister(inlined_digitalPinToPort(pin)) > (volatile uint8_t*)&_SFR_IO8(0x1F)) {
return 1;
}
return 0;
}
/*
* These functions will perform OR/AND on a given register, and are atomic.
*/
extern void __digitalWriteOR_locked(volatile uint8_t*out, uint8_t bit);
extern void __digitalWriteAND_locked(volatile uint8_t*out, uint8_t bit);
INLINED void digitalWrite(uint8_t pin, uint8_t value)
{
if (__builtin_constant_p(pin)) {
if (portWriteNeedsLocking(pin)) {
if (value==LOW) {
__digitalWriteAND_locked(inlined_portOutputRegister(inlined_digitalPinToPort(pin)),~inlined_digitalPinToBitMask(pin));
} else {
__digitalWriteOR_locked(inlined_portOutputRegister(inlined_digitalPinToPort(pin)),inlined_digitalPinToBitMask(pin));
}
} else {
if (value==LOW) {
*inlined_portOutputRegister(inlined_digitalPinToPort(pin)) &= ~(inlined_digitalPinToBitMask(pin));
} else {
*inlined_portOutputRegister(inlined_digitalPinToPort(pin)) |= inlined_digitalPinToBitMask(pin);
}
}
} else {
digitalWrite_lookup(pin,value);
}
}
INLINED void pinMode(uint8_t pin, uint8_t mode)
{
if (__builtin_constant_p(pin)) {
if (portModeNeedsLocking(pin)) {
if (mode==INPUT) {
__digitalWriteAND_locked(inlined_portModeRegister(inlined_digitalPinToPort(pin)),~inlined_digitalPinToBitMask(pin));
} else {
__digitalWriteOR_locked(inlined_portModeRegister(inlined_digitalPinToPort(pin)),inlined_digitalPinToBitMask(pin));
}
} else {
if (mode==INPUT) {
*inlined_portModeRegister(inlined_digitalPinToPort(pin)) &= ~(inlined_digitalPinToBitMask(pin));
} else {
*inlined_portModeRegister(inlined_digitalPinToPort(pin)) |= inlined_digitalPinToBitMask(pin);
}
}
} else {
pinMode_lookup(pin,mode);
}
}
INLINED int digitalRead(uint8_t pin)
{
if (__builtin_constant_p(pin)) {
return !! *inlined_portInputRegister(inlined_digitalPinToPort(pin));
} else {
return digitalRead_lookup(pin);
}
}
#ifdef __cplusplus
} // extern "C"
#endif
#ifdef __cplusplus
#include "WCharacter.h"
#include "WString.h"
#include "HardwareSerial.h"
uint16_t makeWord(uint16_t w);
uint16_t makeWord(byte h, byte l);
#define word(...) makeWord(__VA_ARGS__)
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L);
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0);
void noTone(uint8_t _pin);
// WMath prototypes
long random(long);
long random(long, long);
void randomSeed(unsigned int);
long map(long, long, long, long, long);
#endif
#endif
|