#ifndef Arduino_h #define Arduino_h #include #include #include #include #include #include #include #include "binary.h" #include "pins_arduino.h" #ifdef __cplusplus extern "C"{ #endif #define HIGH 0x1 #define LOW 0x0 #define INPUT 0x0 #define OUTPUT 0x1 #define true 0x1 #define false 0x0 #define PI 3.1415926535897932384626433832795 #define HALF_PI 1.5707963267948966192313216916398 #define TWO_PI 6.283185307179586476925286766559 #define DEG_TO_RAD 0.017453292519943295769236907684886 #define RAD_TO_DEG 57.295779513082320876798154814105 #define SERIAL 0x0 #define DISPLAY 0x1 #define LSBFIRST 0 #define MSBFIRST 1 #define CHANGE 1 #define FALLING 2 #define RISING 3 #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define INTERNAL1V1 2 #define INTERNAL2V56 3 #else #define INTERNAL 3 #endif #define DEFAULT 1 #define EXTERNAL 0 // undefine stdlib's abs if encountered #ifdef abs #undef abs #endif #define min(a,b) ((a)<(b)?(a):(b)) #define max(a,b) ((a)>(b)?(a):(b)) #define abs(x) ((x)>0?(x):-(x)) #define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt))) #define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5)) #define radians(deg) ((deg)*DEG_TO_RAD) #define degrees(rad) ((rad)*RAD_TO_DEG) #define sq(x) ((x)*(x)) #define interrupts() sei() #define noInterrupts() cli() #define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) ) #define microsecondsToClockCycles(a) ( ((a) * (F_CPU / 1000L)) / 1000L ) #define lowByte(w) ((uint8_t) ((w) & 0xff)) #define highByte(w) ((uint8_t) ((w) >> 8)) #define bitRead(value, bit) (((value) >> (bit)) & 0x01) #define bitSet(value, bit) ((value) |= (1UL << (bit))) #define bitClear(value, bit) ((value) &= ~(1UL << (bit))) #define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit)) typedef unsigned int word; #define bit(b) (1UL << (b)) typedef uint8_t boolean; typedef uint8_t byte; void init(void); void pinMode_lookup(uint8_t, uint8_t); void digitalWrite_lookup(uint8_t, uint8_t); int digitalRead_lookup(uint8_t); int analogRead(uint8_t); void analogReference(uint8_t mode); void analogWrite(uint8_t, int); unsigned long millis(void); unsigned long micros(void); void delay(unsigned long); void delayMicroseconds(unsigned int us); unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout); void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val); uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder); void attachInterrupt(uint8_t, void (*)(void), int mode); void detachInterrupt(uint8_t); void setup(void); void loop(void); // Get the bit location within the hardware port of the given virtual pin. // This comes from the pins_*.c file for the active board configuration. #define analogInPinToBit(P) (P) INLINED uint8_t digitalPinToPort(uint8_t pin) { if (__builtin_constant_p(pin)) return inlined_digitalPinToPort(pin); else return pgm_read_byte( digital_pin_to_port_PGM + pin ); } INLINED uint8_t digitalPinToBitMask(uint8_t pin) { if (__builtin_constant_p(pin)) return inlined_digitalPinToBitMask(pin); else return pgm_read_byte( digital_pin_to_bit_mask_PGM + pin ); } INLINED uint8_t digitalPinToTimer(uint8_t pin) { if (__builtin_constant_p(pin)) return inlined_digitalPinToTimer(pin); else return pgm_read_byte( digital_pin_to_timer_PGM + pin ); } INLINED volatile uint8_t *portOutputRegister(uint8_t index) { if (__builtin_constant_p(index)) return inlined_portOutputRegister(index); else return (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + index ) ); } INLINED volatile uint8_t* portInputRegister(uint8_t index) { if (__builtin_constant_p(index)) return inlined_portInputRegister(index); else return (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + index) ); } INLINED volatile uint8_t* portModeRegister(uint8_t index) { if (__builtin_constant_p(index)) return inlined_portModeRegister(index); else return (volatile uint8_t *)( pgm_read_word( port_to_mode_PGM + index) ); } /* * Check if a given pin requires locking. * When accessing lower 32 IO ports we can use SBI/CBI instructions, which are atomic. However * other IO ports require load+modify+store and we need to make them atomic by disabling * interrupts. */ INLINED int portWriteNeedsLocking(uint8_t pin) { /* SBI/CBI instructions only work on lower 32 IO ports */ if (inlined_portOutputRegister(inlined_digitalPinToPort(pin)) > (volatile uint8_t*)&_SFR_IO8(0x1F)) { return 1; } return 0; } INLINED int portModeNeedsLocking(uint8_t pin) { /* SBI/CBI instructions only work on lower 32 IO ports */ if (inlined_portModeRegister(inlined_digitalPinToPort(pin)) > (volatile uint8_t*)&_SFR_IO8(0x1F)) { return 1; } return 0; } /* * These functions will perform OR/AND on a given register, and are atomic. */ extern void __digitalWriteOR_locked(volatile uint8_t*out, uint8_t bit); extern void __digitalWriteAND_locked(volatile uint8_t*out, uint8_t bit); INLINED void digitalWrite(uint8_t pin, uint8_t value) { if (__builtin_constant_p(pin)) { if (portWriteNeedsLocking(pin)) { if (value==LOW) { __digitalWriteAND_locked(inlined_portOutputRegister(inlined_digitalPinToPort(pin)),~inlined_digitalPinToBitMask(pin)); } else { __digitalWriteOR_locked(inlined_portOutputRegister(inlined_digitalPinToPort(pin)),inlined_digitalPinToBitMask(pin)); } } else { if (value==LOW) { *inlined_portOutputRegister(inlined_digitalPinToPort(pin)) &= ~(inlined_digitalPinToBitMask(pin)); } else { *inlined_portOutputRegister(inlined_digitalPinToPort(pin)) |= inlined_digitalPinToBitMask(pin); } } } else { digitalWrite_lookup(pin,value); } } INLINED void pinMode(uint8_t pin, uint8_t mode) { if (__builtin_constant_p(pin)) { if (portModeNeedsLocking(pin)) { if (mode==INPUT) { __digitalWriteAND_locked(inlined_portModeRegister(inlined_digitalPinToPort(pin)),~inlined_digitalPinToBitMask(pin)); } else { __digitalWriteOR_locked(inlined_portModeRegister(inlined_digitalPinToPort(pin)),inlined_digitalPinToBitMask(pin)); } } else { if (mode==INPUT) { *inlined_portModeRegister(inlined_digitalPinToPort(pin)) &= ~(inlined_digitalPinToBitMask(pin)); } else { *inlined_portModeRegister(inlined_digitalPinToPort(pin)) |= inlined_digitalPinToBitMask(pin); } } } else { pinMode_lookup(pin,mode); } } INLINED int digitalRead(uint8_t pin) { if (__builtin_constant_p(pin)) { return !! *inlined_portInputRegister(inlined_digitalPinToPort(pin)); } else { return digitalRead_lookup(pin); } } #ifdef __cplusplus } // extern "C" #endif #ifdef __cplusplus #include "WCharacter.h" #include "WString.h" #include "HardwareSerial.h" uint16_t makeWord(uint16_t w); uint16_t makeWord(byte h, byte l); #define word(...) makeWord(__VA_ARGS__) unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L); void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0); void noTone(uint8_t _pin); // WMath prototypes long random(long); long random(long, long); void randomSeed(unsigned int); long map(long, long, long, long, long); #endif #endif