1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
#include "w5100.h"
#include "socket.h"
extern "C" {
#include "string.h"
}
#include "Arduino.h"
#include "Ethernet.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
#include "Dns.h"
uint16_t EthernetClient::_srcport = 1024;
EthernetClient::EthernetClient() : _sock(MAX_SOCK_NUM) {
}
EthernetClient::EthernetClient(uint8_t sock) : _sock(sock) {
}
int EthernetClient::connect(const char* host, uint16_t port) {
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return connect(remote_addr, port);
} else {
return ret;
}
}
int EthernetClient::connect(IPAddress ip, uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = W5100.readSnSR(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT) {
_sock = i;
break;
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
_srcport++;
if (_srcport == 0) _srcport = 1024;
socket(_sock, SnMR::TCP, _srcport, 0);
if (!::connect(_sock, rawIPAddress(ip), port)) {
_sock = MAX_SOCK_NUM;
return 0;
}
while (status() != SnSR::ESTABLISHED) {
delay(1);
if (status() == SnSR::CLOSED) {
_sock = MAX_SOCK_NUM;
return 0;
}
}
return 1;
}
size_t EthernetClient::write(uint8_t b) {
return write(&b, 1);
}
size_t EthernetClient::write(const uint8_t *buf, size_t size) {
if (_sock == MAX_SOCK_NUM) {
setWriteError();
return 0;
}
if (!send(_sock, buf, size)) {
setWriteError();
return 0;
}
return size;
}
int EthernetClient::available() {
if (_sock != MAX_SOCK_NUM)
return W5100.getRXReceivedSize(_sock);
return 0;
}
int EthernetClient::read() {
uint8_t b;
if ( recv(_sock, &b, 1) > 0 )
{
// recv worked
return b;
}
else
{
// No data available
return -1;
}
}
int EthernetClient::read(uint8_t *buf, size_t size) {
return recv(_sock, buf, size);
}
int EthernetClient::peek() {
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must
if (!available())
return -1;
::peek(_sock, &b);
return b;
}
void EthernetClient::flush() {
while (available())
read();
}
void EthernetClient::stop() {
if (_sock == MAX_SOCK_NUM)
return;
// attempt to close the connection gracefully (send a FIN to other side)
disconnect(_sock);
unsigned long start = millis();
// wait a second for the connection to close
while (status() != SnSR::CLOSED && millis() - start < 1000)
delay(1);
// if it hasn't closed, close it forcefully
if (status() != SnSR::CLOSED)
close(_sock);
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
uint8_t EthernetClient::connected() {
if (_sock == MAX_SOCK_NUM) return 0;
uint8_t s = status();
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
(s == SnSR::CLOSE_WAIT && !available()));
}
uint8_t EthernetClient::status() {
if (_sock == MAX_SOCK_NUM) return SnSR::CLOSED;
return W5100.readSnSR(_sock);
}
// the next function allows us to use the client returned by
// EthernetServer::available() as the condition in an if-statement.
EthernetClient::operator bool() {
return _sock != MAX_SOCK_NUM;
}
|