1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief SPI driver for AVR32 UC3.
*
* This file defines a useful set of functions for the SPI interface on AVR32
* devices.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an SPI module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "spi.h"
#ifdef FREERTOS_USED
#include "FreeRTOS.h"
#include "semphr.h"
#endif
/*! \name SPI Writable Bit-Field Registers
*/
//! @{
typedef union
{
unsigned long cr;
avr32_spi_cr_t CR;
} u_avr32_spi_cr_t;
typedef union
{
unsigned long mr;
avr32_spi_mr_t MR;
} u_avr32_spi_mr_t;
typedef union
{
unsigned long tdr;
avr32_spi_tdr_t TDR;
} u_avr32_spi_tdr_t;
typedef union
{
unsigned long ier;
avr32_spi_ier_t IER;
} u_avr32_spi_ier_t;
typedef union
{
unsigned long idr;
avr32_spi_idr_t IDR;
} u_avr32_spi_idr_t;
typedef union
{
unsigned long csr;
avr32_spi_csr0_t CSR;
} u_avr32_spi_csr_t;
//! @}
#ifdef FREERTOS_USED
//! The SPI mutex.
static xSemaphoreHandle xSPIMutex;
#endif
/*! \brief Calculates the baudrate divider.
*
* \param options Pointer to a structure containing initialization options for
* an SPI channel.
* \param pba_hz SPI module input clock frequency (PBA clock, Hz).
*
* \return Divider or error code.
* \retval >=0 Success.
* \retval <0 Error.
*/
static int getBaudDiv(const spi_options_t *options, unsigned int pba_hz)
{
int baudDiv = (pba_hz + options->baudrate / 2) / options->baudrate;
if (baudDiv <= 0 || baudDiv > 255) {
return -1;
}
return baudDiv;
}
void spi_reset(volatile avr32_spi_t *spi)
{
spi->cr = AVR32_SPI_CR_SWRST_MASK;
}
spi_status_t spi_initSlave(volatile avr32_spi_t *spi,
unsigned char bits,
unsigned char spi_mode)
{
if (spi_mode > 3 ||
bits < 8 || bits > 16) {
return SPI_ERROR_ARGUMENT;
}
// Reset.
spi->cr = AVR32_SPI_CR_SWRST_MASK;
// Will use CSR0 offsets; these are the same for CSR0 to CSR3.
spi->csr0 = ((spi_mode >> 1) << AVR32_SPI_CSR0_CPOL_OFFSET) |
(((spi_mode & 0x1) ^ 0x1) << AVR32_SPI_CSR0_NCPHA_OFFSET) |
((bits - 8) << AVR32_SPI_CSR0_BITS_OFFSET);
return SPI_OK;
}
spi_status_t spi_initTest(volatile avr32_spi_t *spi)
{
// Reset.
spi->cr = AVR32_SPI_CR_SWRST_MASK;
spi->mr |= AVR32_SPI_MR_MSTR_MASK | // Master Mode.
AVR32_SPI_MR_LLB_MASK; // Local Loopback.
return SPI_OK;
}
spi_status_t spi_initMaster(volatile avr32_spi_t *spi, const spi_options_t *options)
{
u_avr32_spi_mr_t u_avr32_spi_mr;
if (options->modfdis > 1) {
return SPI_ERROR_ARGUMENT;
}
// Reset.
spi->cr = AVR32_SPI_CR_SWRST_MASK;
// Master Mode.
u_avr32_spi_mr.mr = spi->mr;
u_avr32_spi_mr.MR.mstr = 1;
u_avr32_spi_mr.MR.modfdis = options->modfdis;
u_avr32_spi_mr.MR.llb = 0;
u_avr32_spi_mr.MR.pcs = (1 << AVR32_SPI_MR_PCS_SIZE) - 1;
spi->mr = u_avr32_spi_mr.mr;
return SPI_OK;
}
spi_status_t spi_selectionMode(volatile avr32_spi_t *spi,
unsigned char variable_ps,
unsigned char pcs_decode,
unsigned char delay)
{
u_avr32_spi_mr_t u_avr32_spi_mr;
if (variable_ps > 1 ||
pcs_decode > 1) {
return SPI_ERROR_ARGUMENT;
}
u_avr32_spi_mr.mr = spi->mr;
u_avr32_spi_mr.MR.ps = variable_ps;
u_avr32_spi_mr.MR.pcsdec = pcs_decode;
u_avr32_spi_mr.MR.dlybcs = delay;
spi->mr = u_avr32_spi_mr.mr;
return SPI_OK;
}
spi_status_t spi_selectChip(volatile avr32_spi_t *spi, unsigned char chip)
{
#ifdef FREERTOS_USED
while (pdFALSE == xSemaphoreTake(xSPIMutex, 20));
#endif
// Assert all lines; no peripheral is selected.
spi->mr |= AVR32_SPI_MR_PCS_MASK;
if (spi->mr & AVR32_SPI_MR_PCSDEC_MASK) {
// The signal is decoded; allow up to 15 chips.
if (chip > 14) {
return SPI_ERROR_ARGUMENT;
}
spi->mr &= ~AVR32_SPI_MR_PCS_MASK | (chip << AVR32_SPI_MR_PCS_OFFSET);
} else {
if (chip > 3) {
return SPI_ERROR_ARGUMENT;
}
spi->mr &= ~(1 << (AVR32_SPI_MR_PCS_OFFSET + chip));
}
return SPI_OK;
}
spi_status_t spi_unselectChip(volatile avr32_spi_t *spi, unsigned char chip)
{
unsigned int timeout = SPI_TIMEOUT;
while (!(spi->sr & AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
// Assert all lines; no peripheral is selected.
spi->mr |= AVR32_SPI_MR_PCS_MASK;
// Last transfer, so deassert the current NPCS if CSAAT is set.
spi->cr = AVR32_SPI_CR_LASTXFER_MASK;
#ifdef FREERTOS_USED
xSemaphoreGive(xSPIMutex);
#endif
return SPI_OK;
}
spi_status_t spi_setupChipReg(volatile avr32_spi_t *spi,
const spi_options_t *options,
unsigned int pba_hz)
{
u_avr32_spi_csr_t u_avr32_spi_csr;
if (options->spi_mode > 3 ||
options->stay_act > 1 ||
options->bits < 8 || options->bits > 16) {
return SPI_ERROR_ARGUMENT;
}
int baudDiv = getBaudDiv(options, pba_hz);
if (baudDiv < 0) {
return SPI_ERROR_ARGUMENT;
}
// Will use CSR0 offsets; these are the same for CSR0 to CSR3.
u_avr32_spi_csr.csr = 0;
u_avr32_spi_csr.CSR.cpol = options->spi_mode >> 1;
u_avr32_spi_csr.CSR.ncpha = (options->spi_mode & 0x1) ^ 0x1;
u_avr32_spi_csr.CSR.csaat = options->stay_act;
u_avr32_spi_csr.CSR.bits = options->bits - 8;
u_avr32_spi_csr.CSR.scbr = baudDiv;
u_avr32_spi_csr.CSR.dlybs = options->spck_delay;
u_avr32_spi_csr.CSR.dlybct = options->trans_delay;
switch(options->reg) {
case 0:
spi->csr0 = u_avr32_spi_csr.csr;
break;
case 1:
spi->csr1 = u_avr32_spi_csr.csr;
break;
case 2:
spi->csr2 = u_avr32_spi_csr.csr;
break;
case 3:
spi->csr3 = u_avr32_spi_csr.csr;
break;
default:
return SPI_ERROR_ARGUMENT;
}
#ifdef FREERTOS_USED
if (!xSPIMutex)
{
// Create the SPI mutex.
vSemaphoreCreateBinary(xSPIMutex);
if (!xSPIMutex)
{
while(1);
}
}
#endif
return SPI_OK;
}
void spi_enable(volatile avr32_spi_t *spi)
{
spi->cr = AVR32_SPI_CR_SPIEN_MASK;
}
void spi_disable(volatile avr32_spi_t *spi)
{
spi->cr = AVR32_SPI_CR_SPIDIS_MASK;
}
int spi_is_enabled(volatile avr32_spi_t *spi)
{
return (spi->sr & AVR32_SPI_SR_SPIENS_MASK) != 0;
}
unsigned char spi_writeRegisterEmptyCheck(volatile avr32_spi_t *spi)
{
return ((spi->sr & AVR32_SPI_SR_TDRE_MASK) != 0);
}
spi_status_t spi_write(volatile avr32_spi_t *spi, unsigned short data)
{
unsigned int timeout = SPI_TIMEOUT;
while (!(spi->sr & AVR32_SPI_SR_TDRE_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
spi->tdr = data << AVR32_SPI_TDR_TD_OFFSET;
return SPI_OK;
}
spi_status_t spi_variableSlaveWrite(volatile avr32_spi_t *spi, unsigned short data,
unsigned char pcs, unsigned char lastxfer)
{
unsigned int timeout = SPI_TIMEOUT;
if (pcs > 14 || lastxfer > 1) {
return SPI_ERROR_ARGUMENT;
}
while (!(spi->sr & AVR32_SPI_SR_TDRE_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
spi->tdr = (data << AVR32_SPI_TDR_TD_OFFSET) |
(pcs << AVR32_SPI_TDR_PCS_OFFSET) |
(lastxfer << AVR32_SPI_TDR_LASTXFER_OFFSET);
return SPI_OK;
}
unsigned char spi_writeEndCheck(volatile avr32_spi_t *spi)
{
return ((spi->sr & AVR32_SPI_SR_TXEMPTY_MASK) != 0);
}
unsigned char spi_readRegisterFullCheck(volatile avr32_spi_t *spi)
{
return ((spi->sr & AVR32_SPI_SR_RDRF_MASK) != 0);
}
spi_status_t spi_read(volatile avr32_spi_t *spi, unsigned short *data)
{
unsigned int timeout = SPI_TIMEOUT;
while ((spi->sr & (AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) !=
(AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
*data = spi->rdr >> AVR32_SPI_RDR_RD_OFFSET;
return SPI_OK;
}
unsigned char spi_getStatus(volatile avr32_spi_t *spi)
{
spi_status_t ret = SPI_OK;
unsigned long sr = spi->sr;
if (sr & AVR32_SPI_SR_OVRES_MASK) {
ret = SPI_ERROR_OVERRUN;
}
if (sr & AVR32_SPI_SR_MODF_MASK) {
ret += SPI_ERROR_MODE_FAULT;
}
if (ret == (SPI_ERROR_OVERRUN + SPI_ERROR_MODE_FAULT)) {
return SPI_ERROR_OVERRUN_AND_MODE_FAULT;
}
else if (ret > 0) {
return ret;
} else {
return SPI_OK;
}
}
|