aboutsummaryrefslogtreecommitdiff
path: root/cores/xinput/wiring.c
blob: 8caf4552126c62f1f83ab2644d606a41e019d2ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
  wiring.c - Partial implementation of the Wiring API for the ATmega8.
  Part of Arduino - http://www.arduino.cc/

  Copyright (c) 2005-2006 David A. Mellis

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA
*/

#include "wiring_private.h"

// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))

// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)

// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)

volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;

#if defined(TIM0_OVF_vect)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
	// copy these to local variables so they can be stored in registers
	// (volatile variables must be read from memory on every access)
	unsigned long m = timer0_millis;
	unsigned char f = timer0_fract;

	m += MILLIS_INC;
	f += FRACT_INC;
	if (f >= FRACT_MAX) {
		f -= FRACT_MAX;
		m += 1;
	}

	timer0_fract = f;
	timer0_millis = m;
	timer0_overflow_count++;
}

unsigned long millis()
{
	unsigned long m;
	uint8_t oldSREG = SREG;

	// disable interrupts while we read timer0_millis or we might get an
	// inconsistent value (e.g. in the middle of a write to timer0_millis)
	cli();
	m = timer0_millis;
	SREG = oldSREG;

	return m;
}

unsigned long micros() {
	unsigned long m;
	uint8_t oldSREG = SREG, t;
	
	cli();
	m = timer0_overflow_count;
#if defined(TCNT0)
	t = TCNT0;
#elif defined(TCNT0L)
	t = TCNT0L;
#else
	#error TIMER 0 not defined
#endif

#ifdef TIFR0
	if ((TIFR0 & _BV(TOV0)) && (t < 255))
		m++;
#else
	if ((TIFR & _BV(TOV0)) && (t < 255))
		m++;
#endif

	SREG = oldSREG;
	
	return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}

void delay(unsigned long ms)
{
	uint32_t start = micros();

	while (ms > 0) {
		yield();
		while ( ms > 0 && (micros() - start) >= 1000) {
			ms--;
			start += 1000;
		}
	}
}

/* Delay for the given number of microseconds.  Assumes a 1, 8, 12, 16, 20 or 24 MHz clock. */
void delayMicroseconds(unsigned int us)
{
	// call = 4 cycles + 2 to 4 cycles to init us(2 for constant delay, 4 for variable)

	// calling avrlib's delay_us() function with low values (e.g. 1 or
	// 2 microseconds) gives delays longer than desired.
	//delay_us(us);
#if F_CPU >= 24000000L
	// for the 24 MHz clock for the adventurous ones trying to overclock

	// zero delay fix
	if (!us) return; //  = 3 cycles, (4 when true)

	// the following loop takes a 1/6 of a microsecond (4 cycles)
	// per iteration, so execute it six times for each microsecond of
	// delay requested.
	us *= 6; // x6 us, = 7 cycles

	// account for the time taken in the preceding commands.
	// we just burned 22 (24) cycles above, remove 5, (5*4=20)
	// us is at least 6 so we can subtract 5
	us -= 5; //=2 cycles

#elif F_CPU >= 20000000L
	// for the 20 MHz clock on rare Arduino boards

	// for a one-microsecond delay, simply return.  the overhead
	// of the function call takes 18 (20) cycles, which is 1us
	__asm__ __volatile__ (
		"nop" "\n\t"
		"nop" "\n\t"
		"nop" "\n\t"
		"nop"); //just waiting 4 cycles
	if (us <= 1) return; //  = 3 cycles, (4 when true)

	// the following loop takes a 1/5 of a microsecond (4 cycles)
	// per iteration, so execute it five times for each microsecond of
	// delay requested.
	us = (us << 2) + us; // x5 us, = 7 cycles

	// account for the time taken in the preceding commands.
	// we just burned 26 (28) cycles above, remove 7, (7*4=28)
	// us is at least 10 so we can subtract 7
	us -= 7; // 2 cycles

#elif F_CPU >= 16000000L
	// for the 16 MHz clock on most Arduino boards

	// for a one-microsecond delay, simply return.  the overhead
	// of the function call takes 14 (16) cycles, which is 1us
	if (us <= 1) return; //  = 3 cycles, (4 when true)

	// the following loop takes 1/4 of a microsecond (4 cycles)
	// per iteration, so execute it four times for each microsecond of
	// delay requested.
	us <<= 2; // x4 us, = 4 cycles

	// account for the time taken in the preceding commands.
	// we just burned 19 (21) cycles above, remove 5, (5*4=20)
	// us is at least 8 so we can subtract 5
	us -= 5; // = 2 cycles,

#elif F_CPU >= 12000000L
	// for the 12 MHz clock if somebody is working with USB

	// for a 1 microsecond delay, simply return.  the overhead
	// of the function call takes 14 (16) cycles, which is 1.5us
	if (us <= 1) return; //  = 3 cycles, (4 when true)

	// the following loop takes 1/3 of a microsecond (4 cycles)
	// per iteration, so execute it three times for each microsecond of
	// delay requested.
	us = (us << 1) + us; // x3 us, = 5 cycles

	// account for the time taken in the preceding commands.
	// we just burned 20 (22) cycles above, remove 5, (5*4=20)
	// us is at least 6 so we can subtract 5
	us -= 5; //2 cycles

#elif F_CPU >= 8000000L
	// for the 8 MHz internal clock

	// for a 1 and 2 microsecond delay, simply return.  the overhead
	// of the function call takes 14 (16) cycles, which is 2us
	if (us <= 2) return; //  = 3 cycles, (4 when true)

	// the following loop takes 1/2 of a microsecond (4 cycles)
	// per iteration, so execute it twice for each microsecond of
	// delay requested.
	us <<= 1; //x2 us, = 2 cycles

	// account for the time taken in the preceding commands.
	// we just burned 17 (19) cycles above, remove 4, (4*4=16)
	// us is at least 6 so we can subtract 4
	us -= 4; // = 2 cycles

#else
	// for the 1 MHz internal clock (default settings for common Atmega microcontrollers)

	// the overhead of the function calls is 14 (16) cycles
	if (us <= 16) return; //= 3 cycles, (4 when true)
	if (us <= 25) return; //= 3 cycles, (4 when true), (must be at least 25 if we want to subtract 22)

	// compensate for the time taken by the preceding and next commands (about 22 cycles)
	us -= 22; // = 2 cycles
	// the following loop takes 4 microseconds (4 cycles)
	// per iteration, so execute it us/4 times
	// us is at least 4, divided by 4 gives us 1 (no zero delay bug)
	us >>= 2; // us div 4, = 4 cycles
	

#endif

	// busy wait
	__asm__ __volatile__ (
		"1: sbiw %0,1" "\n\t" // 2 cycles
		"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
	);
	// return = 4 cycles
}

void init()
{
	// this needs to be called before setup() or some functions won't
	// work there
	sei();
	
	// on the ATmega168, timer 0 is also used for fast hardware pwm
	// (using phase-correct PWM would mean that timer 0 overflowed half as often
	// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
	sbi(TCCR0A, WGM01);
	sbi(TCCR0A, WGM00);
#endif

	// set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
	// CPU specific: different values for the ATmega128
	sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
	// this combination is for the standard atmega8
	sbi(TCCR0, CS01);
	sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
	// this combination is for the standard 168/328/1280/2560
	sbi(TCCR0B, CS01);
	sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
	// this combination is for the __AVR_ATmega645__ series
	sbi(TCCR0A, CS01);
	sbi(TCCR0A, CS00);
#else
	#error Timer 0 prescale factor 64 not set correctly
#endif

	// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
	sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
	sbi(TIMSK0, TOIE0);
#else
	#error	Timer 0 overflow interrupt not set correctly
#endif

	// timers 1 and 2 are used for phase-correct hardware pwm
	// this is better for motors as it ensures an even waveform
	// note, however, that fast pwm mode can achieve a frequency of up
	// 8 MHz (with a 16 MHz clock) at 50% duty cycle

#if defined(TCCR1B) && defined(CS11) && defined(CS10)
	TCCR1B = 0;

	// set timer 1 prescale factor to 64
	sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
	sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
	sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
	sbi(TCCR1, CS10);
#endif
#endif
	// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
	sbi(TCCR1A, WGM10);
#endif

	// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
	sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
	sbi(TCCR2B, CS22);
//#else
	// Timer 2 not finished (may not be present on this CPU)
#endif

	// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
	sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
	sbi(TCCR2A, WGM20);
//#else
	// Timer 2 not finished (may not be present on this CPU)
#endif

#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
	sbi(TCCR3B, CS31);		// set timer 3 prescale factor to 64
	sbi(TCCR3B, CS30);
	sbi(TCCR3A, WGM30);		// put timer 3 in 8-bit phase correct pwm mode
#endif

#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
	sbi(TCCR4B, CS42);		// set timer4 prescale factor to 64
	sbi(TCCR4B, CS41);
	sbi(TCCR4B, CS40);
	sbi(TCCR4D, WGM40);		// put timer 4 in phase- and frequency-correct PWM mode	
	sbi(TCCR4A, PWM4A);		// enable PWM mode for comparator OCR4A
	sbi(TCCR4C, PWM4D);		// enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
	sbi(TCCR4B, CS41);		// set timer 4 prescale factor to 64
	sbi(TCCR4B, CS40);
	sbi(TCCR4A, WGM40);		// put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */	

#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
	sbi(TCCR5B, CS51);		// set timer 5 prescale factor to 64
	sbi(TCCR5B, CS50);
	sbi(TCCR5A, WGM50);		// put timer 5 in 8-bit phase correct pwm mode
#endif

#if defined(ADCSRA)
	// set a2d prescaler so we are inside the desired 50-200 KHz range.
	#if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz
		sbi(ADCSRA, ADPS2);
		sbi(ADCSRA, ADPS1);
		sbi(ADCSRA, ADPS0);
	#elif F_CPU >= 8000000 // 8 MHz / 64 = 125 KHz
		sbi(ADCSRA, ADPS2);
		sbi(ADCSRA, ADPS1);
		cbi(ADCSRA, ADPS0);
	#elif F_CPU >= 4000000 // 4 MHz / 32 = 125 KHz
		sbi(ADCSRA, ADPS2);
		cbi(ADCSRA, ADPS1);
		sbi(ADCSRA, ADPS0);
	#elif F_CPU >= 2000000 // 2 MHz / 16 = 125 KHz
		sbi(ADCSRA, ADPS2);
		cbi(ADCSRA, ADPS1);
		cbi(ADCSRA, ADPS0);
	#elif F_CPU >= 1000000 // 1 MHz / 8 = 125 KHz
		cbi(ADCSRA, ADPS2);
		sbi(ADCSRA, ADPS1);
		sbi(ADCSRA, ADPS0);
	#else // 128 kHz / 2 = 64 KHz -> This is the closest you can get, the prescaler is 2
		cbi(ADCSRA, ADPS2);
		cbi(ADCSRA, ADPS1);
		sbi(ADCSRA, ADPS0);
	#endif
	// enable a2d conversions
	sbi(ADCSRA, ADEN);
#endif

	// the bootloader connects pins 0 and 1 to the USART; disconnect them
	// here so they can be used as normal digital i/o; they will be
	// reconnected in Serial.begin()
#if defined(UCSRB)
	UCSRB = 0;
#elif defined(UCSR0B)
	UCSR0B = 0;
#endif
}