aboutsummaryrefslogtreecommitdiff
path: root/cores/xinput/HardwareSerial.cpp
blob: 561127f9f3dc01a73351a33ca04f07dfd45987dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
  HardwareSerial.cpp - Hardware serial library for Wiring
  Copyright (c) 2006 Nicholas Zambetti.  All right reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public
  License along with this library; if not, write to the Free Software
  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  
  Modified 23 November 2006 by David A. Mellis
  Modified 28 September 2010 by Mark Sproul
  Modified 14 August 2012 by Alarus
  Modified 3 December 2013 by Matthijs Kooijman
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <util/atomic.h>
#include "Arduino.h"

#include "HardwareSerial.h"
#include "HardwareSerial_private.h"

// this next line disables the entire HardwareSerial.cpp, 
// this is so I can support Attiny series and any other chip without a uart
#if defined(HAVE_HWSERIAL0) || defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3)

// SerialEvent functions are weak, so when the user doesn't define them,
// the linker just sets their address to 0 (which is checked below).
// The Serialx_available is just a wrapper around Serialx.available(),
// but we can refer to it weakly so we don't pull in the entire
// HardwareSerial instance if the user doesn't also refer to it.
#if defined(HAVE_HWSERIAL0)
  void serialEvent() __attribute__((weak));
  bool Serial0_available() __attribute__((weak));
#endif

#if defined(HAVE_HWSERIAL1)
  void serialEvent1() __attribute__((weak));
  bool Serial1_available() __attribute__((weak));
#endif

#if defined(HAVE_HWSERIAL2)
  void serialEvent2() __attribute__((weak));
  bool Serial2_available() __attribute__((weak));
#endif

#if defined(HAVE_HWSERIAL3)
  void serialEvent3() __attribute__((weak));
  bool Serial3_available() __attribute__((weak));
#endif

void serialEventRun(void)
{
#if defined(HAVE_HWSERIAL0)
  if (Serial0_available && serialEvent && Serial0_available()) serialEvent();
#endif
#if defined(HAVE_HWSERIAL1)
  if (Serial1_available && serialEvent1 && Serial1_available()) serialEvent1();
#endif
#if defined(HAVE_HWSERIAL2)
  if (Serial2_available && serialEvent2 && Serial2_available()) serialEvent2();
#endif
#if defined(HAVE_HWSERIAL3)
  if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3();
#endif
}

// macro to guard critical sections when needed for large TX buffer sizes
#if (SERIAL_TX_BUFFER_SIZE>256)
#define TX_BUFFER_ATOMIC ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
#else
#define TX_BUFFER_ATOMIC
#endif

// Actual interrupt handlers //////////////////////////////////////////////////////////////

void HardwareSerial::_tx_udr_empty_irq(void)
{
  // If interrupts are enabled, there must be more data in the output
  // buffer. Send the next byte
  unsigned char c = _tx_buffer[_tx_buffer_tail];
  _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;

  *_udr = c;

  // clear the TXC bit -- "can be cleared by writing a one to its bit
  // location". This makes sure flush() won't return until the bytes
  // actually got written. Other r/w bits are preserved, and zeroes
  // written to the rest.

#ifdef MPCM0
  *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0);
#else
  *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0)));
#endif

  if (_tx_buffer_head == _tx_buffer_tail) {
    // Buffer empty, so disable interrupts
    cbi(*_ucsrb, UDRIE0);
  }
}

// Public Methods //////////////////////////////////////////////////////////////

void HardwareSerial::begin(unsigned long baud, byte config)
{
  // Try u2x mode first
  uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;
  *_ucsra = 1 << U2X0;

  // hardcoded exception for 57600 for compatibility with the bootloader
  // shipped with the Duemilanove and previous boards and the firmware
  // on the 8U2 on the Uno and Mega 2560. Also, The baud_setting cannot
  // be > 4095, so switch back to non-u2x mode if the baud rate is too
  // low.
  if (((F_CPU == 16000000UL) && (baud == 57600)) || (baud_setting >4095))
  {
    *_ucsra = 0;
    baud_setting = (F_CPU / 8 / baud - 1) / 2;
  }

  // assign the baud_setting, a.k.a. ubrr (USART Baud Rate Register)
  *_ubrrh = baud_setting >> 8;
  *_ubrrl = baud_setting;

  _written = false;

  //set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
  config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
  *_ucsrc = config;
  
  sbi(*_ucsrb, RXEN0);
  sbi(*_ucsrb, TXEN0);
  sbi(*_ucsrb, RXCIE0);
  cbi(*_ucsrb, UDRIE0);
}

void HardwareSerial::end()
{
  // wait for transmission of outgoing data
  flush();

  cbi(*_ucsrb, RXEN0);
  cbi(*_ucsrb, TXEN0);
  cbi(*_ucsrb, RXCIE0);
  cbi(*_ucsrb, UDRIE0);
  
  // clear any received data
  _rx_buffer_head = _rx_buffer_tail;
}

int HardwareSerial::available(void)
{
  return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
}

int HardwareSerial::peek(void)
{
  if (_rx_buffer_head == _rx_buffer_tail) {
    return -1;
  } else {
    return _rx_buffer[_rx_buffer_tail];
  }
}

int HardwareSerial::read(void)
{
  // if the head isn't ahead of the tail, we don't have any characters
  if (_rx_buffer_head == _rx_buffer_tail) {
    return -1;
  } else {
    unsigned char c = _rx_buffer[_rx_buffer_tail];
    _rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
    return c;
  }
}

int HardwareSerial::availableForWrite(void)
{
  tx_buffer_index_t head;
  tx_buffer_index_t tail;

  TX_BUFFER_ATOMIC {
    head = _tx_buffer_head;
    tail = _tx_buffer_tail;
  }
  if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
  return tail - head - 1;
}

void HardwareSerial::flush()
{
  // If we have never written a byte, no need to flush. This special
  // case is needed since there is no way to force the TXC (transmit
  // complete) bit to 1 during initialization
  if (!_written)
    return;

  while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0)) {
    if (bit_is_clear(SREG, SREG_I) && bit_is_set(*_ucsrb, UDRIE0))
	// Interrupts are globally disabled, but the DR empty
	// interrupt should be enabled, so poll the DR empty flag to
	// prevent deadlock
	if (bit_is_set(*_ucsra, UDRE0))
	  _tx_udr_empty_irq();
  }
  // If we get here, nothing is queued anymore (DRIE is disabled) and
  // the hardware finished transmission (TXC is set).
}

size_t HardwareSerial::write(uint8_t c)
{
  _written = true;
  // If the buffer and the data register is empty, just write the byte
  // to the data register and be done. This shortcut helps
  // significantly improve the effective datarate at high (>
  // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
  if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
    // If TXC is cleared before writing UDR and the previous byte
    // completes before writing to UDR, TXC will be set but a byte
    // is still being transmitted causing flush() to return too soon.
    // So writing UDR must happen first.
    // Writing UDR and clearing TC must be done atomically, otherwise
    // interrupts might delay the TXC clear so the byte written to UDR
    // is transmitted (setting TXC) before clearing TXC. Then TXC will
    // be cleared when no bytes are left, causing flush() to hang
    ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
      *_udr = c;
#ifdef MPCM0
      *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0);
#else
      *_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0)));
#endif
    }
    return 1;
  }
  tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
	
  // If the output buffer is full, there's nothing for it other than to 
  // wait for the interrupt handler to empty it a bit
  while (i == _tx_buffer_tail) {
    if (bit_is_clear(SREG, SREG_I)) {
      // Interrupts are disabled, so we'll have to poll the data
      // register empty flag ourselves. If it is set, pretend an
      // interrupt has happened and call the handler to free up
      // space for us.
      if(bit_is_set(*_ucsra, UDRE0))
	_tx_udr_empty_irq();
    } else {
      // nop, the interrupt handler will free up space for us
    }
  }

  _tx_buffer[_tx_buffer_head] = c;

  // make atomic to prevent execution of ISR between setting the
  // head pointer and setting the interrupt flag resulting in buffer
  // retransmission
  ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
    _tx_buffer_head = i;
    sbi(*_ucsrb, UDRIE0);
  }
  
  return 1;
}

#endif // whole file