1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
/*
Copyright (c) 2014 Arduino. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "new.h"
// The C++ spec dictates that allocation failure should cause the
// (non-nothrow version of the) operator new to throw an exception.
// Since we expect to have exceptions disabled, it would be more
// appropriate (and probably standards-compliant) to terminate instead.
// Historically failure causes null to be returned, but this define
// allows switching to more robust terminating behaviour (that might
// become the default at some point in the future). Note that any code
// that wants null to be returned can (and should) use the nothrow
// versions of the new statement anyway and is unaffected by this.
// #define NEW_TERMINATES_ON_FAILURE
namespace std {
// Defined in abi.cpp
void terminate();
const nothrow_t nothrow;
}
static void * new_helper(std::size_t size) {
// Even zero-sized allocations should return a unique pointer, but
// malloc does not guarantee this
if (size == 0)
size = 1;
return malloc(size);
}
void * operator new(std::size_t size) {
void *res = new_helper(size);
#if defined(NEW_TERMINATES_ON_FAILURE)
if (!res)
std::terminate();
#endif
return res;
}
void * operator new[](std::size_t size) {
return operator new(size);
}
void * operator new(std::size_t size, const std::nothrow_t tag) noexcept {
#if defined(NEW_TERMINATES_ON_FAILURE)
// Cannot call throwing operator new as standard suggests, so call
// new_helper directly then
return new_helper(size);
#else
return operator new(size);
#endif
}
void * operator new[](std::size_t size, const std::nothrow_t& tag) noexcept {
#if defined(NEW_TERMINATES_ON_FAILURE)
// Cannot call throwing operator new[] as standard suggests, so call
// malloc directly then
return new_helper(size);
#else
return operator new[](size);
#endif
}
void * operator new(std::size_t size, void *place) noexcept {
// Nothing to do
(void)size; // unused
return place;
}
void * operator new[](std::size_t size, void *place) noexcept {
return operator new(size, place);
}
void operator delete(void * ptr) noexcept {
free(ptr);
}
void operator delete[](void * ptr) noexcept {
operator delete(ptr);
}
#if __cplusplus >= 201402L
void operator delete(void* ptr, std::size_t size) noexcept {
operator delete(ptr);
}
void operator delete[](void * ptr, std::size_t size) noexcept {
operator delete[](ptr);
}
#endif // __cplusplus >= 201402L
void operator delete(void* ptr, const std::nothrow_t& tag) noexcept {
operator delete(ptr);
}
void operator delete[](void* ptr, const std::nothrow_t& tag) noexcept {
operator delete[](ptr);
}
void operator delete(void* ptr, void* place) noexcept {
(void)ptr; (void)place; // unused
// Nothing to do
}
void operator delete[](void* ptr, void* place) noexcept {
(void)ptr; (void)place; // unused
// Nothing to do
}
|