aboutsummaryrefslogtreecommitdiff
path: root/targets/arduino/wiring.c
blob: 5dda822d30c628513c290bfad8c6f4c92c61eb6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
  wiring.c - Partial implementation of the Wiring API for the ATmega8.
  Part of Arduino - http://www.arduino.cc/

  Copyright (c) 2005-2006 David A. Mellis

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA

  $Id$
*/

#include "wiring_private.h"

// The number of times timer 0 has overflowed since the program started.
// Must be volatile or gcc will optimize away some uses of it.
volatile unsigned long timer0_overflow_count;

SIGNAL(SIG_OVERFLOW0)
{
	timer0_overflow_count++;
}

unsigned long millis()
{
	// timer 0 increments every 64 cycles, and overflows when it reaches
	// 256.  we would calculate the total number of clock cycles, then
	// divide by the number of clock cycles per millisecond, but this
	// overflows too often.
	//return timer0_overflow_count * 64UL * 256UL / (F_CPU / 1000UL);
	
	// instead find 1/128th the number of clock cycles and divide by
	// 1/128th the number of clock cycles per millisecond
	return timer0_overflow_count * 64UL * 2UL / (F_CPU / 128000UL);
}

void delay(unsigned long ms)
{
	unsigned long start = millis();
	
	while (millis() - start < ms)
		;
}

/* Delay for the given number of microseconds.  Assumes a 16 MHz clock. 
 * Disables interrupts, which will disrupt the millis() function if used
 * too frequently. */
void delayMicroseconds(unsigned int us)
{
	uint8_t oldSREG;

	// calling avrlib's delay_us() function with low values (e.g. 1 or
	// 2 microseconds) gives delays longer than desired.
	//delay_us(us);

#if F_CPU >= 16000000L
    // for the 16 MHz clock on most Arduino boards

	// for a one-microsecond delay, simply return.  the overhead
	// of the function call yields a delay of approximately 1 1/8 us.
	if (--us == 0)
		return;

	// the following loop takes a quarter of a microsecond (4 cycles)
	// per iteration, so execute it four times for each microsecond of
	// delay requested.
	us <<= 2;

	// account for the time taken in the preceeding commands.
	us -= 2;
#else
    // for the 8 MHz internal clock on the ATmega168

    // for a one- or two-microsecond delay, simply return.  the overhead of
    // the function calls takes more than two microseconds.  can't just
    // subtract two, since us is unsigned; we'd overflow.
	if (--us == 0)
		return;
	if (--us == 0)
		return;

	// the following loop takes half of a microsecond (4 cycles)
	// per iteration, so execute it twice for each microsecond of
	// delay requested.
	us <<= 1;
    
    // partially compensate for the time taken by the preceeding commands.
    // we can't subtract any more than this or we'd overflow w/ small delays.
    us--;
#endif

	// disable interrupts, otherwise the timer 0 overflow interrupt that
	// tracks milliseconds will make us delay longer than we want.
	oldSREG = SREG;
	cli();

	// busy wait
	__asm__ __volatile__ (
		"1: sbiw %0,1" "\n\t" // 2 cycles
		"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
	);

	// reenable interrupts.
	SREG = oldSREG;
}

void init()
{
	// this needs to be called before setup() or some functions won't
	// work there
	sei();
	
	// timer 0 is used for millis() and delay()
	timer0_overflow_count = 0;
	// on the ATmega168, timer 0 is also used for fast hardware pwm
	// (using phase-correct PWM would mean that timer 0 overflowed half as often
	// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(__AVR_ATmega168__)
	sbi(TCCR0A, WGM01);
	sbi(TCCR0A, WGM00);
#endif  
	// set timer 0 prescale factor to 64
#if defined(__AVR_ATmega168__)
	sbi(TCCR0B, CS01);
	sbi(TCCR0B, CS00);
#else
	sbi(TCCR0, CS01);
	sbi(TCCR0, CS00);
#endif
	// enable timer 0 overflow interrupt
#if defined(__AVR_ATmega168__)
	sbi(TIMSK0, TOIE0);
#else
	sbi(TIMSK, TOIE0);
#endif

	// timers 1 and 2 are used for phase-correct hardware pwm
	// this is better for motors as it ensures an even waveform
	// note, however, that fast pwm mode can achieve a frequency of up
	// 8 MHz (with a 16 MHz clock) at 50% duty cycle

	// set timer 1 prescale factor to 64
	sbi(TCCR1B, CS11);
	sbi(TCCR1B, CS10);
	// put timer 1 in 8-bit phase correct pwm mode
	sbi(TCCR1A, WGM10);

	// set timer 2 prescale factor to 64
#if defined(__AVR_ATmega168__)
	sbi(TCCR2B, CS22);
#else
	sbi(TCCR2, CS22);
#endif
	// configure timer 2 for phase correct pwm (8-bit)
#if defined(__AVR_ATmega168__)
	sbi(TCCR2A, WGM20);
#else
	sbi(TCCR2, WGM20);
#endif

	// set a2d reference to AVCC (5 volts)
	cbi(ADMUX, REFS1);
	sbi(ADMUX, REFS0);

	// set a2d prescale factor to 128
	// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
	// XXX: this will not work properly for other clock speeds, and
	// this code should use F_CPU to determine the prescale factor.
	sbi(ADCSRA, ADPS2);
	sbi(ADCSRA, ADPS1);
	sbi(ADCSRA, ADPS0);

	// enable a2d conversions
	sbi(ADCSRA, ADEN);

	// the bootloader connects pins 0 and 1 to the USART; disconnect them
	// here so they can be used as normal digital i/o; they will be
	// reconnected in Serial.begin()
#if defined(__AVR_ATmega168__)
	UCSR0B = 0;
#else
	UCSRB = 0;
#endif
}