1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
#include "Platform.h"
// This bootloader creates a composite Serial/Mass storage device
//
// The serial interface supports a STK500v1 protocol that is very similar to optiboot
// The mass storage interface emulates a disk image that is used to read or write firmware.bin files
// Delete firmware.bin and copy a new binary (not .hex) file to flash the firmware i.e:
//
// cp firmware.bin f:/. -f
//
// Ejecting the disk will run the firmware
//
// The bootloader will timeout and start the firmware after a few hundred milliseconds
// if a usb connection is not detected.
//
// The tweakier code is to keep the bootloader below 2k (no interrupt table, for example)
extern "C"
void entrypoint(void) __attribute__ ((naked)) __attribute__ ((section (".vectors")));
void entrypoint(void)
{
asm volatile (
"eor r1, r1\n" // Zero register
"out 0x3F, r1\n" // SREG
"ldi r28, 0xFF\n"
"ldi r29, 0x0A\n"
"out 0x3E, r29\n" // SPH
"out 0x3D, r28\n" // SPL
"rjmp main" // Stack is all set up, start the main code
::);
}
u8 _flashbuf[128];
u8 _inSync;
u8 _ok;
extern volatile u8 _ejected;
extern volatile u16 _timeout;
void Program(u8 ep, u16 page, u8 count)
{
u8 write = page < 30*1024; // Don't write over firmware please
if (write)
boot_page_erase(page);
Recv(ep,_flashbuf,count); // Read while page is erasing
if (!write)
return;
boot_spm_busy_wait(); // Wait until the memory is erased.
count >>= 1;
u16* p = (u16*)page;
u16* b = (u16*)_flashbuf;
for (u8 i = 0; i < count; i++)
boot_page_fill(p++, b[i]);
boot_page_write(page);
boot_spm_busy_wait();
boot_rww_enable ();
}
int USBGetChar();
#define getch USBGetChar
#define HW_VER 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10
#define STK_OK 0x10
#define STK_INSYNC 0x14 // ' '
#define CRC_EOP 0x20 // 'SPACE'
#define STK_GET_SYNC 0x30 // '0'
#define STK_GET_PARAMETER 0x41 // 'A'
#define STK_SET_DEVICE 0x42 // 'B'
#define STK_SET_DEVICE_EXT 0x45 // 'E'
#define STK_LOAD_ADDRESS 0x55 // 'U'
#define STK_UNIVERSAL 0x56 // 'V'
#define STK_PROG_PAGE 0x64 // 'd'
#define STK_READ_PAGE 0x74 // 't'
#define STK_READ_SIGN 0x75 // 'u'
extern const u8 _readSize[] PROGMEM;
const u8 _readSize[] =
{
STK_GET_PARAMETER, 1,
STK_SET_DEVICE, 20,
STK_SET_DEVICE_EXT, 5,
STK_UNIVERSAL, 4,
STK_LOAD_ADDRESS, 2,
STK_PROG_PAGE, 3,
STK_READ_PAGE, 3,
0,0
};
extern const u8 _consts[] PROGMEM;
const u8 _consts[] =
{
SIGNATURE_0,
SIGNATURE_1,
SIGNATURE_2,
HW_VER, // Hardware version
SW_MAJOR, // Software major version
SW_MINOR, // Software minor version
0x03, // Unknown but seems to be required by avr studio 3.56
0x00, //
};
void USBInit(void);
int main(void) __attribute__ ((naked));
// STK500v1 main loop, very similar to optiboot in protocol and implementation
int main()
{
wdt_disable();
TXLED0;
RXLED0;
LED0;
BOARD_INIT();
USBInit();
_inSync = STK_INSYNC;
_ok = STK_OK;
if (pgm_read_word(0) != -1)
_ejected = 1;
for(;;)
{
u8* packet = _flashbuf;
u16 address = 0;
for (;;)
{
u8 cmd = getch();
// Read packet contents
u8 len;
const u8* rs = _readSize;
for(;;)
{
u8 c = pgm_read_byte(rs++);
len = pgm_read_byte(rs++);
if (c == cmd || c == 0)
break;
}
_timeout = 0;
// Read params
Recv(CDC_RX,packet,len);
// Send a response
u8 send = 0;
const u8* pgm = _consts+7; // 0
if (STK_GET_PARAMETER == cmd)
{
u8 i = packet[0] - 0x80;
if (i > 2)
i = (i == 0x18) ? 3 : 4; // 0x80:HW_VER,0x81:SW_MAJOR,0x82:SW_MINOR,0x18:3 or 0
pgm = _consts + i + 3;
send = 1;
}
else if (STK_UNIVERSAL == cmd)
{
if (packet[0] == 0x30)
pgm = _consts + packet[2]; // read signature
send = 1;
}
// Read signature bytes
else if (STK_READ_SIGN == cmd)
{
pgm = _consts;
send = 3;
}
else if (STK_LOAD_ADDRESS == cmd)
{
address = *((u16*)packet); // word addresses
address += address;
}
else if (STK_PROG_PAGE == cmd)
{
Program(CDC_RX,address,packet[1]);
}
else if (STK_READ_PAGE == cmd)
{
send = packet[1];
pgm = (const u8*)address;
address += send; // not sure of this is required
}
// Check sync
if (getch() != ' ')
break;
Transfer(CDC_TX,&_inSync,1);
// Send result
if (send)
Transfer(CDC_TX|TRANSFER_PGM,pgm,send); // All from pgm memory
// Send ok
Transfer(CDC_TX|TRANSFER_RELEASE,&_ok,1);
if (cmd == 'Q')
break;
}
_timeout = 1000; // wait a moment before exiting the bootloader - may need to finish responding to 'Q' for example
_ejected = 1;
}
}
// Nice breathing LED indicates we are in the firmware
u16 _pulse;
void LEDPulse()
{
_pulse++;
u8 p = _pulse >> 8;
if (p > 127)
p = 255-p;
p += p;
if (((u8)_pulse) > p)
LED0;
else
LED1;
}
void Reboot()
{
TXLED0; // switch off the RX and TX LEDs before starting the user sketch
RXLED0;
UDCON = 1; // Detatch USB
UDIEN = 0;
asm volatile ( // Reset vector to run firmware
"clr r30\n"
"clr r31\n"
"ijmp\n"
::);
}
|