aboutsummaryrefslogtreecommitdiff
path: root/libraries/Stepper/Stepper.h
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/Stepper/Stepper.h')
-rw-r--r--libraries/Stepper/Stepper.h83
1 files changed, 83 insertions, 0 deletions
diff --git a/libraries/Stepper/Stepper.h b/libraries/Stepper/Stepper.h
new file mode 100644
index 0000000..4094aee
--- /dev/null
+++ b/libraries/Stepper/Stepper.h
@@ -0,0 +1,83 @@
+/*
+ Stepper.h - - Stepper library for Wiring/Arduino - Version 0.4
+
+ Original library (0.1) by Tom Igoe.
+ Two-wire modifications (0.2) by Sebastian Gassner
+ Combination version (0.3) by Tom Igoe and David Mellis
+ Bug fix for four-wire (0.4) by Tom Igoe, bug fix from Noah Shibley
+
+ Drives a unipolar or bipolar stepper motor using 2 wires or 4 wires
+
+ When wiring multiple stepper motors to a microcontroller,
+ you quickly run out of output pins, with each motor requiring 4 connections.
+
+ By making use of the fact that at any time two of the four motor
+ coils are the inverse of the other two, the number of
+ control connections can be reduced from 4 to 2.
+
+ A slightly modified circuit around a Darlington transistor array or an L293 H-bridge
+ connects to only 2 microcontroler pins, inverts the signals received,
+ and delivers the 4 (2 plus 2 inverted ones) output signals required
+ for driving a stepper motor.
+
+ The sequence of control signals for 4 control wires is as follows:
+
+ Step C0 C1 C2 C3
+ 1 1 0 1 0
+ 2 0 1 1 0
+ 3 0 1 0 1
+ 4 1 0 0 1
+
+ The sequence of controls signals for 2 control wires is as follows
+ (columns C1 and C2 from above):
+
+ Step C0 C1
+ 1 0 1
+ 2 1 1
+ 3 1 0
+ 4 0 0
+
+ The circuits can be found at
+ http://www.arduino.cc/en/Tutorial/Stepper
+*/
+
+// ensure this library description is only included once
+#ifndef Stepper_h
+#define Stepper_h
+
+// library interface description
+class Stepper {
+ public:
+ // constructors:
+ Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2);
+ Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2, int motor_pin_3, int motor_pin_4);
+
+ // speed setter method:
+ void setSpeed(long whatSpeed);
+
+ // mover method:
+ void step(int number_of_steps);
+
+ int version(void);
+
+ private:
+ void stepMotor(int this_step);
+
+ int direction; // Direction of rotation
+ int speed; // Speed in RPMs
+ unsigned long step_delay; // delay between steps, in ms, based on speed
+ int number_of_steps; // total number of steps this motor can take
+ int pin_count; // whether you're driving the motor with 2 or 4 pins
+ int step_number; // which step the motor is on
+
+ // motor pin numbers:
+ int motor_pin_1;
+ int motor_pin_2;
+ int motor_pin_3;
+ int motor_pin_4;
+
+ long last_step_time; // time stamp in ms of when the last step was taken
+};
+
+#endif
+