aboutsummaryrefslogtreecommitdiff
path: root/cores/arduino/wiring.c
diff options
context:
space:
mode:
Diffstat (limited to 'cores/arduino/wiring.c')
-rw-r--r--cores/arduino/wiring.c392
1 files changed, 0 insertions, 392 deletions
diff --git a/cores/arduino/wiring.c b/cores/arduino/wiring.c
deleted file mode 100644
index 8caf455..0000000
--- a/cores/arduino/wiring.c
+++ /dev/null
@@ -1,392 +0,0 @@
-/*
- wiring.c - Partial implementation of the Wiring API for the ATmega8.
- Part of Arduino - http://www.arduino.cc/
-
- Copyright (c) 2005-2006 David A. Mellis
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General
- Public License along with this library; if not, write to the
- Free Software Foundation, Inc., 59 Temple Place, Suite 330,
- Boston, MA 02111-1307 USA
-*/
-
-#include "wiring_private.h"
-
-// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
-// the overflow handler is called every 256 ticks.
-#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
-
-// the whole number of milliseconds per timer0 overflow
-#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
-
-// the fractional number of milliseconds per timer0 overflow. we shift right
-// by three to fit these numbers into a byte. (for the clock speeds we care
-// about - 8 and 16 MHz - this doesn't lose precision.)
-#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
-#define FRACT_MAX (1000 >> 3)
-
-volatile unsigned long timer0_overflow_count = 0;
-volatile unsigned long timer0_millis = 0;
-static unsigned char timer0_fract = 0;
-
-#if defined(TIM0_OVF_vect)
-ISR(TIM0_OVF_vect)
-#else
-ISR(TIMER0_OVF_vect)
-#endif
-{
- // copy these to local variables so they can be stored in registers
- // (volatile variables must be read from memory on every access)
- unsigned long m = timer0_millis;
- unsigned char f = timer0_fract;
-
- m += MILLIS_INC;
- f += FRACT_INC;
- if (f >= FRACT_MAX) {
- f -= FRACT_MAX;
- m += 1;
- }
-
- timer0_fract = f;
- timer0_millis = m;
- timer0_overflow_count++;
-}
-
-unsigned long millis()
-{
- unsigned long m;
- uint8_t oldSREG = SREG;
-
- // disable interrupts while we read timer0_millis or we might get an
- // inconsistent value (e.g. in the middle of a write to timer0_millis)
- cli();
- m = timer0_millis;
- SREG = oldSREG;
-
- return m;
-}
-
-unsigned long micros() {
- unsigned long m;
- uint8_t oldSREG = SREG, t;
-
- cli();
- m = timer0_overflow_count;
-#if defined(TCNT0)
- t = TCNT0;
-#elif defined(TCNT0L)
- t = TCNT0L;
-#else
- #error TIMER 0 not defined
-#endif
-
-#ifdef TIFR0
- if ((TIFR0 & _BV(TOV0)) && (t < 255))
- m++;
-#else
- if ((TIFR & _BV(TOV0)) && (t < 255))
- m++;
-#endif
-
- SREG = oldSREG;
-
- return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
-}
-
-void delay(unsigned long ms)
-{
- uint32_t start = micros();
-
- while (ms > 0) {
- yield();
- while ( ms > 0 && (micros() - start) >= 1000) {
- ms--;
- start += 1000;
- }
- }
-}
-
-/* Delay for the given number of microseconds. Assumes a 1, 8, 12, 16, 20 or 24 MHz clock. */
-void delayMicroseconds(unsigned int us)
-{
- // call = 4 cycles + 2 to 4 cycles to init us(2 for constant delay, 4 for variable)
-
- // calling avrlib's delay_us() function with low values (e.g. 1 or
- // 2 microseconds) gives delays longer than desired.
- //delay_us(us);
-#if F_CPU >= 24000000L
- // for the 24 MHz clock for the adventurous ones trying to overclock
-
- // zero delay fix
- if (!us) return; // = 3 cycles, (4 when true)
-
- // the following loop takes a 1/6 of a microsecond (4 cycles)
- // per iteration, so execute it six times for each microsecond of
- // delay requested.
- us *= 6; // x6 us, = 7 cycles
-
- // account for the time taken in the preceding commands.
- // we just burned 22 (24) cycles above, remove 5, (5*4=20)
- // us is at least 6 so we can subtract 5
- us -= 5; //=2 cycles
-
-#elif F_CPU >= 20000000L
- // for the 20 MHz clock on rare Arduino boards
-
- // for a one-microsecond delay, simply return. the overhead
- // of the function call takes 18 (20) cycles, which is 1us
- __asm__ __volatile__ (
- "nop" "\n\t"
- "nop" "\n\t"
- "nop" "\n\t"
- "nop"); //just waiting 4 cycles
- if (us <= 1) return; // = 3 cycles, (4 when true)
-
- // the following loop takes a 1/5 of a microsecond (4 cycles)
- // per iteration, so execute it five times for each microsecond of
- // delay requested.
- us = (us << 2) + us; // x5 us, = 7 cycles
-
- // account for the time taken in the preceding commands.
- // we just burned 26 (28) cycles above, remove 7, (7*4=28)
- // us is at least 10 so we can subtract 7
- us -= 7; // 2 cycles
-
-#elif F_CPU >= 16000000L
- // for the 16 MHz clock on most Arduino boards
-
- // for a one-microsecond delay, simply return. the overhead
- // of the function call takes 14 (16) cycles, which is 1us
- if (us <= 1) return; // = 3 cycles, (4 when true)
-
- // the following loop takes 1/4 of a microsecond (4 cycles)
- // per iteration, so execute it four times for each microsecond of
- // delay requested.
- us <<= 2; // x4 us, = 4 cycles
-
- // account for the time taken in the preceding commands.
- // we just burned 19 (21) cycles above, remove 5, (5*4=20)
- // us is at least 8 so we can subtract 5
- us -= 5; // = 2 cycles,
-
-#elif F_CPU >= 12000000L
- // for the 12 MHz clock if somebody is working with USB
-
- // for a 1 microsecond delay, simply return. the overhead
- // of the function call takes 14 (16) cycles, which is 1.5us
- if (us <= 1) return; // = 3 cycles, (4 when true)
-
- // the following loop takes 1/3 of a microsecond (4 cycles)
- // per iteration, so execute it three times for each microsecond of
- // delay requested.
- us = (us << 1) + us; // x3 us, = 5 cycles
-
- // account for the time taken in the preceding commands.
- // we just burned 20 (22) cycles above, remove 5, (5*4=20)
- // us is at least 6 so we can subtract 5
- us -= 5; //2 cycles
-
-#elif F_CPU >= 8000000L
- // for the 8 MHz internal clock
-
- // for a 1 and 2 microsecond delay, simply return. the overhead
- // of the function call takes 14 (16) cycles, which is 2us
- if (us <= 2) return; // = 3 cycles, (4 when true)
-
- // the following loop takes 1/2 of a microsecond (4 cycles)
- // per iteration, so execute it twice for each microsecond of
- // delay requested.
- us <<= 1; //x2 us, = 2 cycles
-
- // account for the time taken in the preceding commands.
- // we just burned 17 (19) cycles above, remove 4, (4*4=16)
- // us is at least 6 so we can subtract 4
- us -= 4; // = 2 cycles
-
-#else
- // for the 1 MHz internal clock (default settings for common Atmega microcontrollers)
-
- // the overhead of the function calls is 14 (16) cycles
- if (us <= 16) return; //= 3 cycles, (4 when true)
- if (us <= 25) return; //= 3 cycles, (4 when true), (must be at least 25 if we want to subtract 22)
-
- // compensate for the time taken by the preceding and next commands (about 22 cycles)
- us -= 22; // = 2 cycles
- // the following loop takes 4 microseconds (4 cycles)
- // per iteration, so execute it us/4 times
- // us is at least 4, divided by 4 gives us 1 (no zero delay bug)
- us >>= 2; // us div 4, = 4 cycles
-
-
-#endif
-
- // busy wait
- __asm__ __volatile__ (
- "1: sbiw %0,1" "\n\t" // 2 cycles
- "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
- );
- // return = 4 cycles
-}
-
-void init()
-{
- // this needs to be called before setup() or some functions won't
- // work there
- sei();
-
- // on the ATmega168, timer 0 is also used for fast hardware pwm
- // (using phase-correct PWM would mean that timer 0 overflowed half as often
- // resulting in different millis() behavior on the ATmega8 and ATmega168)
-#if defined(TCCR0A) && defined(WGM01)
- sbi(TCCR0A, WGM01);
- sbi(TCCR0A, WGM00);
-#endif
-
- // set timer 0 prescale factor to 64
-#if defined(__AVR_ATmega128__)
- // CPU specific: different values for the ATmega128
- sbi(TCCR0, CS02);
-#elif defined(TCCR0) && defined(CS01) && defined(CS00)
- // this combination is for the standard atmega8
- sbi(TCCR0, CS01);
- sbi(TCCR0, CS00);
-#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
- // this combination is for the standard 168/328/1280/2560
- sbi(TCCR0B, CS01);
- sbi(TCCR0B, CS00);
-#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
- // this combination is for the __AVR_ATmega645__ series
- sbi(TCCR0A, CS01);
- sbi(TCCR0A, CS00);
-#else
- #error Timer 0 prescale factor 64 not set correctly
-#endif
-
- // enable timer 0 overflow interrupt
-#if defined(TIMSK) && defined(TOIE0)
- sbi(TIMSK, TOIE0);
-#elif defined(TIMSK0) && defined(TOIE0)
- sbi(TIMSK0, TOIE0);
-#else
- #error Timer 0 overflow interrupt not set correctly
-#endif
-
- // timers 1 and 2 are used for phase-correct hardware pwm
- // this is better for motors as it ensures an even waveform
- // note, however, that fast pwm mode can achieve a frequency of up
- // 8 MHz (with a 16 MHz clock) at 50% duty cycle
-
-#if defined(TCCR1B) && defined(CS11) && defined(CS10)
- TCCR1B = 0;
-
- // set timer 1 prescale factor to 64
- sbi(TCCR1B, CS11);
-#if F_CPU >= 8000000L
- sbi(TCCR1B, CS10);
-#endif
-#elif defined(TCCR1) && defined(CS11) && defined(CS10)
- sbi(TCCR1, CS11);
-#if F_CPU >= 8000000L
- sbi(TCCR1, CS10);
-#endif
-#endif
- // put timer 1 in 8-bit phase correct pwm mode
-#if defined(TCCR1A) && defined(WGM10)
- sbi(TCCR1A, WGM10);
-#endif
-
- // set timer 2 prescale factor to 64
-#if defined(TCCR2) && defined(CS22)
- sbi(TCCR2, CS22);
-#elif defined(TCCR2B) && defined(CS22)
- sbi(TCCR2B, CS22);
-//#else
- // Timer 2 not finished (may not be present on this CPU)
-#endif
-
- // configure timer 2 for phase correct pwm (8-bit)
-#if defined(TCCR2) && defined(WGM20)
- sbi(TCCR2, WGM20);
-#elif defined(TCCR2A) && defined(WGM20)
- sbi(TCCR2A, WGM20);
-//#else
- // Timer 2 not finished (may not be present on this CPU)
-#endif
-
-#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
- sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
- sbi(TCCR3B, CS30);
- sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
-#endif
-
-#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
- sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
- sbi(TCCR4B, CS41);
- sbi(TCCR4B, CS40);
- sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
- sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
- sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
-#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
-#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
- sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
- sbi(TCCR4B, CS40);
- sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
-#endif
-#endif /* end timer4 block for ATMEGA1280/2560 and similar */
-
-#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
- sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
- sbi(TCCR5B, CS50);
- sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
-#endif
-
-#if defined(ADCSRA)
- // set a2d prescaler so we are inside the desired 50-200 KHz range.
- #if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz
- sbi(ADCSRA, ADPS2);
- sbi(ADCSRA, ADPS1);
- sbi(ADCSRA, ADPS0);
- #elif F_CPU >= 8000000 // 8 MHz / 64 = 125 KHz
- sbi(ADCSRA, ADPS2);
- sbi(ADCSRA, ADPS1);
- cbi(ADCSRA, ADPS0);
- #elif F_CPU >= 4000000 // 4 MHz / 32 = 125 KHz
- sbi(ADCSRA, ADPS2);
- cbi(ADCSRA, ADPS1);
- sbi(ADCSRA, ADPS0);
- #elif F_CPU >= 2000000 // 2 MHz / 16 = 125 KHz
- sbi(ADCSRA, ADPS2);
- cbi(ADCSRA, ADPS1);
- cbi(ADCSRA, ADPS0);
- #elif F_CPU >= 1000000 // 1 MHz / 8 = 125 KHz
- cbi(ADCSRA, ADPS2);
- sbi(ADCSRA, ADPS1);
- sbi(ADCSRA, ADPS0);
- #else // 128 kHz / 2 = 64 KHz -> This is the closest you can get, the prescaler is 2
- cbi(ADCSRA, ADPS2);
- cbi(ADCSRA, ADPS1);
- sbi(ADCSRA, ADPS0);
- #endif
- // enable a2d conversions
- sbi(ADCSRA, ADEN);
-#endif
-
- // the bootloader connects pins 0 and 1 to the USART; disconnect them
- // here so they can be used as normal digital i/o; they will be
- // reconnected in Serial.begin()
-#if defined(UCSRB)
- UCSRB = 0;
-#elif defined(UCSR0B)
- UCSR0B = 0;
-#endif
-}