/****************************************************************** This is the core graphics library for all our displays, providing basic graphics primitives (points, lines, circles, etc.). It needs to be paired with a hardware-specific library for each display device we carry (handling the lower-level functions). Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! Written by Limor Fried/Ladyada for Adafruit Industries. BSD license, check license.txt for more information. All text above must be included in any redistribution. ******************************************************************/ #include "Adafruit_GFX.h" #include "glcdfont.c" #include void Adafruit_GFX::constructor(int16_t w, int16_t h) { _width = WIDTH = w; _height = HEIGHT = h; rotation = 0; cursor_y = cursor_x = 0; textsize = 1; textcolor = textbgcolor = 0xFFFF; wrap = true; strokeColor = 0; useStroke = true; fillColor = 0; useFill = false; } // draw a circle outline void Adafruit_GFX::drawCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; drawPixel(x0, y0+r, color); drawPixel(x0, y0-r, color); drawPixel(x0+r, y0, color); drawPixel(x0-r, y0, color); while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; drawPixel(x0 + x, y0 + y, color); drawPixel(x0 - x, y0 + y, color); drawPixel(x0 + x, y0 - y, color); drawPixel(x0 - x, y0 - y, color); drawPixel(x0 + y, y0 + x, color); drawPixel(x0 - y, y0 + x, color); drawPixel(x0 + y, y0 - x, color); drawPixel(x0 - y, y0 - x, color); } } void Adafruit_GFX::drawCircleHelper( int16_t x0, int16_t y0, int16_t r, uint8_t cornername, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x4) { drawPixel(x0 + x, y0 + y, color); drawPixel(x0 + y, y0 + x, color); } if (cornername & 0x2) { drawPixel(x0 + x, y0 - y, color); drawPixel(x0 + y, y0 - x, color); } if (cornername & 0x8) { drawPixel(x0 - y, y0 + x, color); drawPixel(x0 - x, y0 + y, color); } if (cornername & 0x1) { drawPixel(x0 - y, y0 - x, color); drawPixel(x0 - x, y0 - y, color); } } } void Adafruit_GFX::fillCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { drawFastVLine(x0, y0-r, 2*r+1, color); fillCircleHelper(x0, y0, r, 3, 0, color); } // used to do circles and roundrects! void Adafruit_GFX::fillCircleHelper(int16_t x0, int16_t y0, int16_t r, uint8_t cornername, int16_t delta, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x1) { drawFastVLine(x0+x, y0-y, 2*y+1+delta, color); drawFastVLine(x0+y, y0-x, 2*x+1+delta, color); } if (cornername & 0x2) { drawFastVLine(x0-x, y0-y, 2*y+1+delta, color); drawFastVLine(x0-y, y0-x, 2*x+1+delta, color); } } } // bresenham's algorithm - thx wikpedia void Adafruit_GFX::drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t color) { int16_t steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { swap(x0, y0); swap(x1, y1); } if (x0 > x1) { swap(x0, x1); swap(y0, y1); } int16_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int16_t err = dx / 2; int16_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1; } for (; x0<=x1; x0++) { if (steep) { drawPixel(y0, x0, color); } else { drawPixel(x0, y0, color); } err -= dy; if (err < 0) { y0 += ystep; err += dx; } } } // draw a rectangle void Adafruit_GFX::drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { drawFastHLine(x, y, w, color); drawFastHLine(x, y+h-1, w, color); drawFastVLine(x, y, h, color); drawFastVLine(x+w-1, y, h, color); } void Adafruit_GFX::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // stupidest version - update in subclasses if desired! drawLine(x, y, x, y+h-1, color); } void Adafruit_GFX::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // stupidest version - update in subclasses if desired! drawLine(x, y, x+w-1, y, color); } void Adafruit_GFX::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // stupidest version - update in subclasses if desired! for (int16_t i=x; i= y1 >= y0) if (y0 > y1) { swap(y0, y1); swap(x0, x1); } if (y1 > y2) { swap(y2, y1); swap(x2, x1); } if (y0 > y1) { swap(y0, y1); swap(x0, x1); } if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing a = b = x0; if(x1 < a) a = x1; else if(x1 > b) b = x1; if(x2 < a) a = x2; else if(x2 > b) b = x2; drawFastHLine(a, y0, b-a+1, color); return; } int16_t dx01 = x1 - x0, dy01 = y1 - y0, dx02 = x2 - x0, dy02 = y2 - y0, dx12 = x2 - x1, dy12 = y2 - y1, sa = 0, sb = 0; // For upper part of triangle, find scanline crossings for segments // 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1 // is included here (and second loop will be skipped, avoiding a /0 // error there), otherwise scanline y1 is skipped here and handled // in the second loop...which also avoids a /0 error here if y0=y1 // (flat-topped triangle). if(y1 == y2) last = y1; // Include y1 scanline else last = y1-1; // Skip it for(y=y0; y<=last; y++) { a = x0 + sa / dy01; b = x0 + sb / dy02; sa += dx01; sb += dx02; /* longhand: a = x0 + (x1 - x0) * (y - y0) / (y1 - y0); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); drawFastHLine(a, y, b-a+1, color); } // For lower part of triangle, find scanline crossings for segments // 0-2 and 1-2. This loop is skipped if y1=y2. sa = dx12 * (y - y1); sb = dx02 * (y - y0); for(; y<=y2; y++) { a = x1 + sa / dy12; b = x0 + sb / dy02; sa += dx12; sb += dx02; /* longhand: a = x1 + (x2 - x1) * (y - y1) / (y2 - y1); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); drawFastHLine(a, y, b-a+1, color); } } void Adafruit_GFX::drawBitmap(int16_t x, int16_t y, const uint8_t *bitmap, int16_t w, int16_t h, uint16_t color) { int16_t i, j, byteWidth = (w + 7) / 8; for(j=0; j> (i & 7))) { drawPixel(x+i, y+j, color); } } } } #if ARDUINO >= 100 size_t Adafruit_GFX::write(uint8_t c) { #else void Adafruit_GFX::write(uint8_t c) { #endif if (c == '\n') { cursor_y += textsize*8; cursor_x = 0; } else if (c == '\r') { // skip em } else { drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize); cursor_x += textsize*6; if (wrap && (cursor_x > (_width - textsize*6))) { cursor_y += textsize*8; cursor_x = 0; } } #if ARDUINO >= 100 return 1; #endif } // draw a character void Adafruit_GFX::drawChar(int16_t x, int16_t y, unsigned char c, uint16_t color, uint16_t bg, uint8_t size) { if((x >= _width) || // Clip right (y >= _height) || // Clip bottom ((x + 5 * size - 1) < 0) || // Clip left ((y + 8 * size - 1) < 0)) // Clip top return; for (int8_t i=0; i<6; i++ ) { uint8_t line; if (i == 5) line = 0x0; else line = pgm_read_byte(font+(c*5)+i); for (int8_t j = 0; j<8; j++) { if (line & 0x1) { if (size == 1) // default size drawPixel(x+i, y+j, color); else { // big size fillRect(x+(i*size), y+(j*size), size, size, color); } } else if (bg != color) { if (size == 1) // default size drawPixel(x+i, y+j, bg); else { // big size fillRect(x+i*size, y+j*size, size, size, bg); } } line >>= 1; } } } void Adafruit_GFX::setCursor(int16_t x, int16_t y) { cursor_x = x; cursor_y = y; } void Adafruit_GFX::setTextSize(uint8_t s) { textsize = (s > 0) ? s : 1; } void Adafruit_GFX::setTextColor(uint16_t c) { textcolor = c; textbgcolor = c; // for 'transparent' background, we'll set the bg // to the same as fg instead of using a flag } void Adafruit_GFX::setTextColor(uint16_t c, uint16_t b) { textcolor = c; textbgcolor = b; } void Adafruit_GFX::setTextWrap(boolean w) { wrap = w; } uint8_t Adafruit_GFX::getRotation(void) { rotation %= 4; return rotation; } void Adafruit_GFX::setRotation(uint8_t x) { x %= 4; // cant be higher than 3 rotation = x; switch (x) { case 0: case 2: _width = WIDTH; _height = HEIGHT; break; case 1: case 3: _width = HEIGHT; _height = WIDTH; break; } } void Adafruit_GFX::invertDisplay(boolean i) { // do nothing, can be subclassed } // return the size of the display which depends on the rotation! int16_t Adafruit_GFX::width(void) { return _width; } int16_t Adafruit_GFX::height(void) { return _height; } uint16_t Adafruit_GFX::newColor(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3); } void Adafruit_GFX::background(uint8_t red, uint8_t green, uint8_t blue) { background(newColor(red, green, blue)); } void Adafruit_GFX::background(color c) { fillScreen(c); } void Adafruit_GFX::stroke(uint8_t red, uint8_t green, uint8_t blue) { stroke(newColor(red, green, blue)); } void Adafruit_GFX::stroke(color c) { useStroke = true; strokeColor = c; setTextColor(c); } void Adafruit_GFX::noStroke() { useStroke = false; } void Adafruit_GFX::noFill() { useFill = false; } void Adafruit_GFX::fill(uint8_t red, uint8_t green, uint8_t blue) { fill(newColor(red, green, blue)); } void Adafruit_GFX::fill(color c) { useFill = true; fillColor = c; } void Adafruit_GFX::text(const char * text, int16_t x, int16_t y) { if (!useStroke) return; setTextWrap(false); setTextColor(strokeColor); setCursor(x, y); print(text); } void Adafruit_GFX::textWrap(const char * text, int16_t x, int16_t y) { if (!useStroke) return; setTextWrap(true); setTextColor(strokeColor); setCursor(x, y); print(text); } void Adafruit_GFX::textSize(uint8_t size) { setTextSize(size); } void Adafruit_GFX::point(int16_t x, int16_t y) { if (!useStroke) return; drawPixel(x, y, strokeColor); } void Adafruit_GFX::line(int16_t x1, int16_t y1, int16_t x2, int16_t y2) { if (!useStroke) return; if (x1 == x2) { if (y1 < y2) drawFastVLine(x1, y1, y2 - y1, strokeColor); else drawFastVLine(x1, y2, y1 - y2, strokeColor); } else if (y1 == y2) { if (x1 < x2) drawFastHLine(x1, y1, x2 - x1, strokeColor); else drawFastHLine(x2, y1, x1 - x2, strokeColor); } else { drawLine(x1, y1, x2, y2, strokeColor); } } void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height) { if (useFill) { fillRect(x, y, width, height, fillColor); } if (useStroke) { drawRect(x, y, width, height, strokeColor); } } void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius) { if (radius == 0) { rect(x, y, width, height); } if (useFill) { fillRoundRect(x, y, width, height, radius, fillColor); } if (useStroke) { drawRoundRect(x, y, width, height, radius, strokeColor); } } void Adafruit_GFX::circle(int16_t x, int16_t y, int16_t r) { if (r == 0) return; if (useFill) { fillCircle(x, y, r, fillColor); } if (useStroke) { drawCircle(x, y, r, strokeColor); } } void Adafruit_GFX::triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3) { if (useFill) { fillTriangle(x1, y1, x2, y2, x3, y3, fillColor); } if (useStroke) { drawTriangle(x1, y1, x2, y2, x3, y3, strokeColor); } } #if defined(__SD_H__) // Arduino SD library #define BUFFPIXEL 20 void Adafruit_GFX::image(PImage & img, uint16_t x, uint16_t y) { int w, h, row, col; uint8_t r, g, b; uint32_t pos = 0; uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel) uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer // Crop area to be loaded w = img._bmpWidth; h = img._bmpHeight; if((x+w-1) >= width()) w = width() - x; if((y+h-1) >= height()) h = height() - y; /* // Set TFT address window to clipped image bounds setAddrWindow(x, y, x+w-1, y+h-1); */ for (row=0; row= sizeof(sdbuffer)) { // Indeed img._bmpFile.read(sdbuffer, sizeof(sdbuffer)); buffidx = 0; // Set index to beginning } // Convert pixel from BMP to TFT format, push to display b = sdbuffer[buffidx++]; g = sdbuffer[buffidx++]; r = sdbuffer[buffidx++]; //pushColor(tft.Color565(r,g,b)); drawPixel(x + col, y + row, newColor(r, g, b)); } // end pixel } // end scanline } #endif