/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */ /*This file is prepared for Doxygen automatic documentation generation.*/ /*! \file ********************************************************************* * * \brief TC driver for AVR32 UC3. * * AVR32 Timer/Counter driver module. * * - Compiler: IAR EWAVR32 and GNU GCC for AVR32 * - Supported devices: All AVR32 devices with a TC module can be used. * - AppNote: * * \author Atmel Corporation: http://www.atmel.com \n * Support and FAQ: http://support.atmel.no/ * ******************************************************************************/ /* Copyright (c) 2009 Atmel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an Atmel * AVR product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE * */ #include #include "compiler.h" #include "tc.h" int tc_get_interrupt_settings(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; return tc->channel[channel].imr; } int tc_configure_interrupts(volatile avr32_tc_t *tc, unsigned int channel, const tc_interrupt_t *bitfield) { Bool global_interrupt_enabled = Is_global_interrupt_enabled(); // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // Enable the appropriate interrupts. tc->channel[channel].ier = bitfield->etrgs << AVR32_TC_ETRGS_OFFSET | bitfield->ldrbs << AVR32_TC_LDRBS_OFFSET | bitfield->ldras << AVR32_TC_LDRAS_OFFSET | bitfield->cpcs << AVR32_TC_CPCS_OFFSET | bitfield->cpbs << AVR32_TC_CPBS_OFFSET | bitfield->cpas << AVR32_TC_CPAS_OFFSET | bitfield->lovrs << AVR32_TC_LOVRS_OFFSET | bitfield->covfs << AVR32_TC_COVFS_OFFSET; // Disable the appropriate interrupts. if (global_interrupt_enabled) Disable_global_interrupt(); tc->channel[channel].idr = (~bitfield->etrgs & 1) << AVR32_TC_ETRGS_OFFSET | (~bitfield->ldrbs & 1) << AVR32_TC_LDRBS_OFFSET | (~bitfield->ldras & 1) << AVR32_TC_LDRAS_OFFSET | (~bitfield->cpcs & 1) << AVR32_TC_CPCS_OFFSET | (~bitfield->cpbs & 1) << AVR32_TC_CPBS_OFFSET | (~bitfield->cpas & 1) << AVR32_TC_CPAS_OFFSET | (~bitfield->lovrs & 1) << AVR32_TC_LOVRS_OFFSET | (~bitfield->covfs & 1) << AVR32_TC_COVFS_OFFSET; tc->channel[channel].sr; if (global_interrupt_enabled) Enable_global_interrupt(); return 0; } int tc_select_external_clock(volatile avr32_tc_t *tc, unsigned int channel, unsigned int ext_clk_sig_src) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS || ext_clk_sig_src >= 1 << AVR32_TC_BMR_TC0XC0S_SIZE) return TC_INVALID_ARGUMENT; // Clear bit-field and set the correct behavior. tc->bmr = (tc->bmr & ~(AVR32_TC_BMR_TC0XC0S_MASK << (channel * AVR32_TC_BMR_TC0XC0S_SIZE))) | (ext_clk_sig_src << (channel * AVR32_TC_BMR_TC0XC0S_SIZE)); return 0; } int tc_init_capture(volatile avr32_tc_t *tc, const tc_capture_opt_t *opt) { // Check for valid input. if (opt->channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // MEASURE SIGNALS: Capture operating mode. tc->channel[opt->channel].cmr = opt->ldrb << AVR32_TC_LDRB_OFFSET | opt->ldra << AVR32_TC_LDRA_OFFSET | 0 << AVR32_TC_WAVE_OFFSET | opt->cpctrg << AVR32_TC_CPCTRG_OFFSET | opt->abetrg << AVR32_TC_ABETRG_OFFSET | opt->etrgedg << AVR32_TC_ETRGEDG_OFFSET| opt->ldbdis << AVR32_TC_LDBDIS_OFFSET | opt->ldbstop << AVR32_TC_LDBSTOP_OFFSET | opt->burst << AVR32_TC_BURST_OFFSET | opt->clki << AVR32_TC_CLKI_OFFSET | opt->tcclks << AVR32_TC_TCCLKS_OFFSET; return 0; } int tc_init_waveform(volatile avr32_tc_t *tc, const tc_waveform_opt_t *opt) { // Check for valid input. if (opt->channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // GENERATE SIGNALS: Waveform operating mode. tc->channel[opt->channel].cmr = opt->bswtrg << AVR32_TC_BSWTRG_OFFSET | opt->beevt << AVR32_TC_BEEVT_OFFSET | opt->bcpc << AVR32_TC_BCPC_OFFSET | opt->bcpb << AVR32_TC_BCPB_OFFSET | opt->aswtrg << AVR32_TC_ASWTRG_OFFSET | opt->aeevt << AVR32_TC_AEEVT_OFFSET | opt->acpc << AVR32_TC_ACPC_OFFSET | opt->acpa << AVR32_TC_ACPA_OFFSET | 1 << AVR32_TC_WAVE_OFFSET | opt->wavsel << AVR32_TC_WAVSEL_OFFSET | opt->enetrg << AVR32_TC_ENETRG_OFFSET | opt->eevt << AVR32_TC_EEVT_OFFSET | opt->eevtedg << AVR32_TC_EEVTEDG_OFFSET | opt->cpcdis << AVR32_TC_CPCDIS_OFFSET | opt->cpcstop << AVR32_TC_CPCSTOP_OFFSET | opt->burst << AVR32_TC_BURST_OFFSET | opt->clki << AVR32_TC_CLKI_OFFSET | opt->tcclks << AVR32_TC_TCCLKS_OFFSET; return 0; } int tc_start(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // Enable, reset and start the selected timer/counter channel. tc->channel[channel].ccr = AVR32_TC_SWTRG_MASK | AVR32_TC_CLKEN_MASK; return 0; } int tc_stop(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // Disable the selected timer/counter channel. tc->channel[channel].ccr = AVR32_TC_CLKDIS_MASK; return 0; } int tc_software_trigger(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // Reset the selected timer/counter channel. tc->channel[channel].ccr = AVR32_TC_SWTRG_MASK; return 0; } void tc_sync_trigger(volatile avr32_tc_t *tc) { // Reset all channels of the selected timer/counter. tc->bcr = AVR32_TC_BCR_SYNC_MASK; } void tc_sync_start(volatile avr32_tc_t *tc) { unsigned int i; // Enable the clock for each channel. for(i=0; ichannel[i].ccr = AVR32_TC_CLKEN_MASK; // Reset all channels of the selected timer/counter. tc->bcr = AVR32_TC_BCR_SYNC_MASK; } int tc_read_sr(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; return tc->channel[channel].sr; } int tc_read_tc(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; return Rd_bitfield(tc->channel[channel].cv, AVR32_TC_CV_MASK); } int tc_read_ra(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; return Rd_bitfield(tc->channel[channel].ra, AVR32_TC_RA_MASK); } int tc_read_rb(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; return Rd_bitfield(tc->channel[channel].rb, AVR32_TC_RB_MASK); } int tc_read_rc(volatile avr32_tc_t *tc, unsigned int channel) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; return Rd_bitfield(tc->channel[channel].rc, AVR32_TC_RC_MASK); } int tc_write_ra(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // This function is only available in WAVEFORM mode. if (Tst_bits(tc->channel[channel].cmr, AVR32_TC_WAVE_MASK)) Wr_bitfield(tc->channel[channel].ra, AVR32_TC_RA_MASK, value); return value; } int tc_write_rb(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // This function is only available in WAVEFORM mode. if (Tst_bits(tc->channel[channel].cmr, AVR32_TC_WAVE_MASK)) Wr_bitfield(tc->channel[channel].rb, AVR32_TC_RB_MASK, value); return value; } int tc_write_rc(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value) { // Check for valid input. if (channel >= TC_NUMBER_OF_CHANNELS) return TC_INVALID_ARGUMENT; // This function is only available in WAVEFORM mode. if (Tst_bits(tc->channel[channel].cmr, AVR32_TC_WAVE_MASK)) Wr_bitfield(tc->channel[channel].rc, AVR32_TC_RC_MASK, value); return value; }