/* wiring_serial.c - serial functions. Part of Arduino - http://www.arduino.cc/ Copyright (c) 2005-2006 David A. Mellis This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA $Id: wiring.c 248 2007-02-03 15:36:30Z mellis $ */ #include "wiring_private.h" // Define constants and variables for buffering incoming serial data. We're // using a ring buffer (I think), in which rx_buffer_head is the index of the // location to which to write the next incoming character and rx_buffer_tail // is the index of the location from which to read. #define RX_BUFFER_SIZE 128 unsigned char rx_buffer[RX_BUFFER_SIZE]; int rx_buffer_head = 0; int rx_buffer_tail = 0; void beginSerial(long baud) { #if defined(__AVR_ATmega168__) UBRR0H = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; UBRR0L = ((F_CPU / 16 + baud / 2) / baud - 1); // enable rx and tx sbi(UCSR0B, RXEN0); sbi(UCSR0B, TXEN0); // enable interrupt on complete reception of a byte sbi(UCSR0B, RXCIE0); #else UBRRH = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; UBRRL = ((F_CPU / 16 + baud / 2) / baud - 1); // enable rx and tx sbi(UCSRB, RXEN); sbi(UCSRB, TXEN); // enable interrupt on complete reception of a byte sbi(UCSRB, RXCIE); #endif // defaults to 8-bit, no parity, 1 stop bit } void serialWrite(unsigned char c) { #if defined(__AVR_ATmega168__) while (!(UCSR0A & (1 << UDRE0))) ; UDR0 = c; #else while (!(UCSRA & (1 << UDRE))) ; UDR = c; #endif } int serialAvailable() { return (RX_BUFFER_SIZE + rx_buffer_head - rx_buffer_tail) % RX_BUFFER_SIZE; } int serialRead() { // if the head isn't ahead of the tail, we don't have any characters if (rx_buffer_head == rx_buffer_tail) { return -1; } else { unsigned char c = rx_buffer[rx_buffer_tail]; rx_buffer_tail = (rx_buffer_tail + 1) % RX_BUFFER_SIZE; return c; } } void serialFlush() { // don't reverse this or there may be problems if the RX interrupt // occurs after reading the value of rx_buffer_head but before writing // the value to rx_buffer_tail; the previous value of rx_buffer_head // may be written to rx_buffer_tail, making it appear as if the buffer // were full, not empty. rx_buffer_head = rx_buffer_tail; } #if defined(__AVR_ATmega168__) SIGNAL(SIG_USART_RECV) #else SIGNAL(SIG_UART_RECV) #endif { #if defined(__AVR_ATmega168__) unsigned char c = UDR0; #else unsigned char c = UDR; #endif int i = (rx_buffer_head + 1) % RX_BUFFER_SIZE; // if we should be storing the received character into the location // just before the tail (meaning that the head would advance to the // current location of the tail), we're about to overflow the buffer // and so we don't write the character or advance the head. if (i != rx_buffer_tail) { rx_buffer[rx_buffer_head] = c; rx_buffer_head = i; } }