/* HardwareSerial.cpp - Hardware serial library for Wiring Copyright (c) 2006 Nicholas Zambetti. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Modified 23 November 2006 by David A. Mellis Modified 28 September 2010 by Mark Sproul */ #include #include #include #include #include "Arduino.h" #include "wiring_private.h" // this next line disables the entire HardwareSerial.cpp, // this is so I can support Attiny series and any other chip without a uart #if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H) #include "HardwareSerial.h" // Define constants and variables for buffering incoming serial data. We're // using a ring buffer (I think), in which head is the index of the location // to which to write the next incoming character and tail is the index of the // location from which to read. #if (RAMEND < 1000) #define SERIAL_BUFFER_SIZE 16 #else #define SERIAL_BUFFER_SIZE 64 #endif struct ring_buffer { unsigned char buffer[SERIAL_BUFFER_SIZE]; volatile int head; volatile int tail; }; #if defined(UBRRH) || defined(UBRR0H) ring_buffer rx_buffer = { { 0 }, 0, 0 }; ring_buffer tx_buffer = { { 0 }, 0, 0 }; #endif #if defined(UBRR1H) ring_buffer rx_buffer1 = { { 0 }, 0, 0 }; ring_buffer tx_buffer1 = { { 0 }, 0, 0 }; #endif #if defined(UBRR2H) ring_buffer rx_buffer2 = { { 0 }, 0, 0 }; ring_buffer tx_buffer2 = { { 0 }, 0, 0 }; #endif #if defined(UBRR3H) ring_buffer rx_buffer3 = { { 0 }, 0, 0 }; ring_buffer tx_buffer3 = { { 0 }, 0, 0 }; #endif inline void store_char(unsigned char c, ring_buffer *buffer) { int i = (unsigned int)(buffer->head + 1) % SERIAL_BUFFER_SIZE; // if we should be storing the received character into the location // just before the tail (meaning that the head would advance to the // current location of the tail), we're about to overflow the buffer // and so we don't write the character or advance the head. if (i != buffer->tail) { buffer->buffer[buffer->head] = c; buffer->head = i; } } #if !defined(USART_RX_vect) && !defined(SIG_USART0_RECV) && \ !defined(SIG_UART0_RECV) && !defined(USART0_RX_vect) && \ !defined(SIG_UART_RECV) #error Don't know what the Data Received vector is called for the first UART #else void serialEvent() __attribute__((weak)); void serialEvent() {} #if defined(USART_RX_vect) SIGNAL(USART_RX_vect) #elif defined(SIG_USART0_RECV) SIGNAL(SIG_USART0_RECV) #elif defined(SIG_UART0_RECV) SIGNAL(SIG_UART0_RECV) #elif defined(USART0_RX_vect) SIGNAL(USART0_RX_vect) #elif defined(SIG_UART_RECV) SIGNAL(SIG_UART_RECV) #endif { #if defined(UDR0) unsigned char c = UDR0; #elif defined(UDR) unsigned char c = UDR; #else #error UDR not defined #endif store_char(c, &rx_buffer); serialEvent(); } #endif #if defined(USART1_RX_vect) void serialEvent1() __attribute__((weak)); void serialEvent1() {} SIGNAL(USART1_RX_vect) { unsigned char c = UDR1; store_char(c, &rx_buffer1); serialEvent1(); } #elif defined(SIG_USART1_RECV) #error SIG_USART1_RECV #endif #if defined(USART2_RX_vect) && defined(UDR2) void serialEvent2() __attribute__((weak)); void serialEvent2() {} SIGNAL(USART2_RX_vect) { unsigned char c = UDR2; store_char(c, &rx_buffer2); serialEvent2(); } #elif defined(SIG_USART2_RECV) #error SIG_USART2_RECV #endif #if defined(USART3_RX_vect) && defined(UDR3) void serialEvent3() __attribute__((weak)); void serialEvent3() {} SIGNAL(USART3_RX_vect) { unsigned char c = UDR3; store_char(c, &rx_buffer3); serialEvent3(); } #elif defined(SIG_USART3_RECV) #error SIG_USART3_RECV #endif #if !defined(UART0_UDRE_vect) && !defined(UART_UDRE_vect) && !defined(USART0_UDRE_vect) && !defined(USART_UDRE_vect) #error Don't know what the Data Register Empty vector is called for the first UART #else #if defined(UART0_UDRE_vect) ISR(UART0_UDRE_vect) #elif defined(UART_UDRE_vect) ISR(UART_UDRE_vect) #elif defined(USART0_UDRE_vect) ISR(USART0_UDRE_vect) #elif defined(USART_UDRE_vect) ISR(USART_UDRE_vect) #endif { if (tx_buffer.head == tx_buffer.tail) { // Buffer empty, so disable interrupts #if defined(UCSR0B) cbi(UCSR0B, UDRIE0); #else cbi(UCSRB, UDRIE); #endif } else { // There is more data in the output buffer. Send the next byte unsigned char c = tx_buffer.buffer[tx_buffer.tail]; tx_buffer.tail = (tx_buffer.tail + 1) % SERIAL_BUFFER_SIZE; #if defined(UDR0) UDR0 = c; #elif defined(UDR) UDR = c; #else #error UDR not defined #endif } } #endif #ifdef USART1_UDRE_vect ISR(USART1_UDRE_vect) { if (tx_buffer1.head == tx_buffer1.tail) { // Buffer empty, so disable interrupts cbi(UCSR1B, UDRIE1); } else { // There is more data in the output buffer. Send the next byte unsigned char c = tx_buffer1.buffer[tx_buffer1.tail]; tx_buffer1.tail = (tx_buffer1.tail + 1) % SERIAL_BUFFER_SIZE; UDR1 = c; } } #endif #ifdef USART2_UDRE_vect ISR(USART2_UDRE_vect) { if (tx_buffer2.head == tx_buffer2.tail) { // Buffer empty, so disable interrupts cbi(UCSR2B, UDRIE2); } else { // There is more data in the output buffer. Send the next byte unsigned char c = tx_buffer2.buffer[tx_buffer2.tail]; tx_buffer2.tail = (tx_buffer2.tail + 1) % SERIAL_BUFFER_SIZE; UDR2 = c; } } #endif #ifdef USART3_UDRE_vect ISR(USART3_UDRE_vect) { if (tx_buffer3.head == tx_buffer3.tail) { // Buffer empty, so disable interrupts cbi(UCSR3B, UDRIE3); } else { // There is more data in the output buffer. Send the next byte unsigned char c = tx_buffer3.buffer[tx_buffer3.tail]; tx_buffer3.tail = (tx_buffer3.tail + 1) % SERIAL_BUFFER_SIZE; UDR3 = c; } } #endif // Constructors //////////////////////////////////////////////////////////////// HardwareSerial::HardwareSerial(ring_buffer *rx_buffer, ring_buffer *tx_buffer, volatile uint8_t *ubrrh, volatile uint8_t *ubrrl, volatile uint8_t *ucsra, volatile uint8_t *ucsrb, volatile uint8_t *udr, uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x) { _rx_buffer = rx_buffer; _tx_buffer = tx_buffer; _ubrrh = ubrrh; _ubrrl = ubrrl; _ucsra = ucsra; _ucsrb = ucsrb; _udr = udr; _rxen = rxen; _txen = txen; _rxcie = rxcie; _udrie = udrie; _u2x = u2x; } // Public Methods ////////////////////////////////////////////////////////////// void HardwareSerial::begin(long baud) { uint16_t baud_setting; bool use_u2x = true; #if F_CPU == 16000000UL // hardcoded exception for compatibility with the bootloader shipped // with the Duemilanove and previous boards and the firmware on the 8U2 // on the Uno and Mega 2560. if (baud == 57600) { use_u2x = false; } #endif if (use_u2x) { *_ucsra = 1 << _u2x; baud_setting = (F_CPU / 4 / baud - 1) / 2; } else { *_ucsra = 0; baud_setting = (F_CPU / 8 / baud - 1) / 2; } // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) *_ubrrh = baud_setting >> 8; *_ubrrl = baud_setting; sbi(*_ucsrb, _rxen); sbi(*_ucsrb, _txen); sbi(*_ucsrb, _rxcie); cbi(*_ucsrb, _udrie); } void HardwareSerial::end() { // wait for transmission of outgoing data while (_tx_buffer->head != _tx_buffer->tail) ; cbi(*_ucsrb, _rxen); cbi(*_ucsrb, _txen); cbi(*_ucsrb, _rxcie); cbi(*_ucsrb, _udrie); // clear any received data _rx_buffer->head = _rx_buffer->tail; } int HardwareSerial::available(void) { return (unsigned int)(SERIAL_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % SERIAL_BUFFER_SIZE; } int HardwareSerial::peek(void) { if (_rx_buffer->head == _rx_buffer->tail) { return -1; } else { return _rx_buffer->buffer[_rx_buffer->tail]; } } int HardwareSerial::read(void) { // if the head isn't ahead of the tail, we don't have any characters if (_rx_buffer->head == _rx_buffer->tail) { return -1; } else { unsigned char c = _rx_buffer->buffer[_rx_buffer->tail]; _rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % SERIAL_BUFFER_SIZE; return c; } } void HardwareSerial::flush() { while (_tx_buffer->head != _tx_buffer->tail) ; } void HardwareSerial::write(uint8_t c) { int i = (_tx_buffer->head + 1) % SERIAL_BUFFER_SIZE; // If the output buffer is full, there's nothing for it other than to // wait for the interrupt handler to empty it a bit while (i == _tx_buffer->tail) ; _tx_buffer->buffer[_tx_buffer->head] = c; _tx_buffer->head = i; sbi(*_ucsrb, _udrie); } // Preinstantiate Objects ////////////////////////////////////////////////////// #if defined(UBRRH) && defined(UBRRL) HardwareSerial Serial(&rx_buffer, &tx_buffer, &UBRRH, &UBRRL, &UCSRA, &UCSRB, &UDR, RXEN, TXEN, RXCIE, UDRIE, U2X); #elif defined(UBRR0H) && defined(UBRR0L) HardwareSerial Serial(&rx_buffer, &tx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UDR0, RXEN0, TXEN0, RXCIE0, UDRIE0, U2X0); #elif defined(USBCON) #warning no serial port defined (port 0) #else #error no serial port defined (port 0) #endif #if defined(UBRR1H) HardwareSerial Serial1(&rx_buffer1, &tx_buffer1, &UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UDR1, RXEN1, TXEN1, RXCIE1, UDRIE1, U2X1); #endif #if defined(UBRR2H) HardwareSerial Serial2(&rx_buffer2, &tx_buffer2, &UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UDR2, RXEN2, TXEN2, RXCIE2, UDRIE2, U2X2); #endif #if defined(UBRR3H) HardwareSerial Serial3(&rx_buffer3, &tx_buffer3, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UDR3, RXEN3, TXEN3, RXCIE3, UDRIE3, U2X3); #endif #endif // whole file