optiboot_luminet.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .text 00000274 00001d00 00001d00 00000054 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 1 .debug_aranges 00000028 00000000 00000000 000002c8 2**0 CONTENTS, READONLY, DEBUGGING 2 .debug_pubnames 00000078 00000000 00000000 000002f0 2**0 CONTENTS, READONLY, DEBUGGING 3 .debug_info 000002a4 00000000 00000000 00000368 2**0 CONTENTS, READONLY, DEBUGGING 4 .debug_abbrev 000001ac 00000000 00000000 0000060c 2**0 CONTENTS, READONLY, DEBUGGING 5 .debug_line 000004a9 00000000 00000000 000007b8 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_frame 000000a0 00000000 00000000 00000c64 2**2 CONTENTS, READONLY, DEBUGGING 7 .debug_str 00000150 00000000 00000000 00000d04 2**0 CONTENTS, READONLY, DEBUGGING 8 .debug_loc 00000194 00000000 00000000 00000e54 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_ranges 00000088 00000000 00000000 00000fe8 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00001d00
: #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 1d00: 11 24 eor r1, r1 #ifdef __AVR_ATmega8__ SP=RAMEND; // This is done by hardware reset #endif // Adaboot no-wait mod ch = MCUSR; 1d02: 84 b7 in r24, 0x34 ; 52 MCUSR = 0; 1d04: 14 be out 0x34, r1 ; 52 if (!(ch & _BV(EXTRF))) appStart(); 1d06: 81 ff sbrs r24, 1 1d08: 22 d1 rcall .+580 ; 0x1f4e #if LED_START_FLASHES > 0 // Set up Timer 1 for timeout counter TCCR1B = _BV(CS12) | _BV(CS10); // div 1024 1d0a: 85 e0 ldi r24, 0x05 ; 5 1d0c: 8e bd out 0x2e, r24 ; 46 UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); #endif #endif // Set up watchdog to trigger after 500ms watchdogConfig(WATCHDOG_1S); 1d0e: 8e e0 ldi r24, 0x0E ; 14 1d10: 1a d1 rcall .+564 ; 0x1f46 /* Set LED pin as output */ LED_DDR |= _BV(LED); 1d12: d4 9a sbi 0x1a, 4 ; 26 #ifdef SOFT_UART /* Set TX pin as output */ UART_DDR |= _BV(UART_TX_BIT); 1d14: d2 9a sbi 0x1a, 2 ; 26 1d16: 86 e0 ldi r24, 0x06 ; 6 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 1d18: 23 ec ldi r18, 0xC3 ; 195 1d1a: 3f ef ldi r19, 0xFF ; 255 TIFR1 = _BV(TOV1); 1d1c: 91 e0 ldi r25, 0x01 ; 1 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 1d1e: 3d bd out 0x2d, r19 ; 45 1d20: 2c bd out 0x2c, r18 ; 44 TIFR1 = _BV(TOV1); 1d22: 9b b9 out 0x0b, r25 ; 11 while(!(TIFR1 & _BV(TOV1))); 1d24: 58 9b sbis 0x0b, 0 ; 11 1d26: fe cf rjmp .-4 ; 0x1d24 #ifdef __AVR_ATmega8__ LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); 1d28: cc 9a sbi 0x19, 4 ; 25 return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 1d2a: a8 95 wdr LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); #endif watchdogReset(); } while (--count); 1d2c: 81 50 subi r24, 0x01 ; 1 1d2e: b9 f7 brne .-18 ; 0x1d1e /* get character from UART */ ch = getch(); if(ch == STK_GET_PARAMETER) { // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 1d30: dd 24 eor r13, r13 1d32: d3 94 inc r13 __boot_page_fill_short((uint16_t)(void*)addrPtr,a); addrPtr += 2; } while (--ch); // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 1d34: 85 e0 ldi r24, 0x05 ; 5 1d36: c8 2e mov r12, r24 vect -= 4; // Instruction is a relative jump (rjmp), so recalculate. buff[8] = vect & 0xff; buff[9] = vect >> 8; // Add jump to bootloader at RESET vector buff[0] = 0x7f; 1d38: 0f e7 ldi r16, 0x7F ; 127 1d3a: f0 2e mov r15, r16 buff[1] = 0xce; // rjmp 0x1d00 instruction 1d3c: 1e ec ldi r17, 0xCE ; 206 1d3e: e1 2e mov r14, r17 #endif /* Forever loop */ for (;;) { /* get character from UART */ ch = getch(); 1d40: e9 d0 rcall .+466 ; 0x1f14 if(ch == STK_GET_PARAMETER) { 1d42: 81 34 cpi r24, 0x41 ; 65 1d44: 21 f4 brne .+8 ; 0x1d4e // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 1d46: 81 e0 ldi r24, 0x01 ; 1 1d48: 0d d1 rcall .+538 ; 0x1f64 putch(0x03); 1d4a: 83 e0 ldi r24, 0x03 ; 3 1d4c: 20 c0 rjmp .+64 ; 0x1d8e } else if(ch == STK_SET_DEVICE) { 1d4e: 82 34 cpi r24, 0x42 ; 66 1d50: 11 f4 brne .+4 ; 0x1d56 // SET DEVICE is ignored getNch(20); 1d52: 84 e1 ldi r24, 0x14 ; 20 1d54: 03 c0 rjmp .+6 ; 0x1d5c } else if(ch == STK_SET_DEVICE_EXT) { 1d56: 85 34 cpi r24, 0x45 ; 69 1d58: 19 f4 brne .+6 ; 0x1d60 // SET DEVICE EXT is ignored getNch(5); 1d5a: 85 e0 ldi r24, 0x05 ; 5 1d5c: 03 d1 rcall .+518 ; 0x1f64 1d5e: c8 c0 rjmp .+400 ; 0x1ef0 } else if(ch == STK_LOAD_ADDRESS) { 1d60: 85 35 cpi r24, 0x55 ; 85 1d62: 81 f4 brne .+32 ; 0x1d84 // LOAD ADDRESS uint16_t newAddress; newAddress = getch(); 1d64: d7 d0 rcall .+430 ; 0x1f14 newAddress = (newAddress & 0xff) | (getch() << 8); 1d66: 08 2f mov r16, r24 1d68: 10 e0 ldi r17, 0x00 ; 0 1d6a: d4 d0 rcall .+424 ; 0x1f14 1d6c: 90 e0 ldi r25, 0x00 ; 0 1d6e: 98 2f mov r25, r24 1d70: 88 27 eor r24, r24 1d72: 80 2b or r24, r16 1d74: 91 2b or r25, r17 #ifdef RAMPZ // Transfer top bit to RAMPZ RAMPZ = (newAddress & 0x8000) ? 1 : 0; #endif newAddress += newAddress; // Convert from word address to byte address 1d76: 88 0f add r24, r24 1d78: 99 1f adc r25, r25 address = newAddress; 1d7a: 90 93 81 01 sts 0x0181, r25 1d7e: 80 93 80 01 sts 0x0180, r24 1d82: b5 c0 rjmp .+362 ; 0x1eee verifySpace(); } else if(ch == STK_UNIVERSAL) { 1d84: 86 35 cpi r24, 0x56 ; 86 1d86: 29 f4 brne .+10 ; 0x1d92 // UNIVERSAL command is ignored getNch(4); 1d88: 84 e0 ldi r24, 0x04 ; 4 1d8a: ec d0 rcall .+472 ; 0x1f64 putch(0x00); 1d8c: 80 e0 ldi r24, 0x00 ; 0 1d8e: b3 d0 rcall .+358 ; 0x1ef6 1d90: af c0 rjmp .+350 ; 0x1ef0 } /* Write memory, length is big endian and is in bytes */ else if(ch == STK_PROG_PAGE) { 1d92: 84 36 cpi r24, 0x64 ; 100 1d94: 09 f0 breq .+2 ; 0x1d98 1d96: 6b c0 rjmp .+214 ; 0x1e6e // PROGRAM PAGE - we support flash programming only, not EEPROM uint8_t *bufPtr; uint16_t addrPtr; getLen(); 1d98: d1 d0 rcall .+418 ; 0x1f3c 1d9a: c0 e0 ldi r28, 0x00 ; 0 1d9c: d1 e0 ldi r29, 0x01 ; 1 // If we are in RWW section, immediately start page erase if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); // While that is going on, read in page contents bufPtr = buff; do *bufPtr++ = getch(); 1d9e: ba d0 rcall .+372 ; 0x1f14 1da0: 89 93 st Y+, r24 while (--length); 1da2: 80 91 82 01 lds r24, 0x0182 1da6: 81 50 subi r24, 0x01 ; 1 1da8: 80 93 82 01 sts 0x0182, r24 1dac: 88 23 and r24, r24 1dae: b9 f7 brne .-18 ; 0x1d9e // If we are in NRWW section, page erase has to be delayed until now. // Todo: Take RAMPZ into account if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); 1db0: e0 91 80 01 lds r30, 0x0180 1db4: f0 91 81 01 lds r31, 0x0181 1db8: 83 e0 ldi r24, 0x03 ; 3 1dba: 87 bf out 0x37, r24 ; 55 1dbc: e8 95 spm // Read command terminator, start reply verifySpace(); 1dbe: cc d0 rcall .+408 ; 0x1f58 // If only a partial page is to be programmed, the erase might not be complete. // So check that here boot_spm_busy_wait(); 1dc0: 07 b6 in r0, 0x37 ; 55 1dc2: 00 fc sbrc r0, 0 1dc4: fd cf rjmp .-6 ; 0x1dc0 #ifdef VIRTUAL_BOOT_PARTITION if ((uint16_t)(void*)address == 0) { 1dc6: 80 91 80 01 lds r24, 0x0180 1dca: 90 91 81 01 lds r25, 0x0181 1dce: 89 2b or r24, r25 1dd0: 41 f5 brne .+80 ; 0x1e22 // This is the reset vector page. We need to live-patch the code so the // bootloader runs. // // Move RESET vector to WDT vector uint16_t vect = buff[0] | (buff[1]<<8); 1dd2: 80 91 00 01 lds r24, 0x0100 1dd6: 20 91 01 01 lds r18, 0x0101 1dda: 30 e0 ldi r19, 0x00 ; 0 1ddc: 32 2f mov r19, r18 1dde: 22 27 eor r18, r18 1de0: 90 e0 ldi r25, 0x00 ; 0 1de2: 28 2b or r18, r24 1de4: 39 2b or r19, r25 rstVect = vect; 1de6: 30 93 85 01 sts 0x0185, r19 1dea: 20 93 84 01 sts 0x0184, r18 wdtVect = buff[8] | (buff[9]<<8); 1dee: 40 91 08 01 lds r20, 0x0108 1df2: 80 91 09 01 lds r24, 0x0109 1df6: 90 e0 ldi r25, 0x00 ; 0 1df8: 98 2f mov r25, r24 1dfa: 88 27 eor r24, r24 1dfc: 50 e0 ldi r21, 0x00 ; 0 1dfe: 84 2b or r24, r20 1e00: 95 2b or r25, r21 1e02: 90 93 87 01 sts 0x0187, r25 1e06: 80 93 86 01 sts 0x0186, r24 vect -= 4; // Instruction is a relative jump (rjmp), so recalculate. 1e0a: 24 50 subi r18, 0x04 ; 4 1e0c: 30 40 sbci r19, 0x00 ; 0 buff[8] = vect & 0xff; 1e0e: 20 93 08 01 sts 0x0108, r18 buff[9] = vect >> 8; 1e12: 23 2f mov r18, r19 1e14: 33 27 eor r19, r19 1e16: 20 93 09 01 sts 0x0109, r18 // Add jump to bootloader at RESET vector buff[0] = 0x7f; 1e1a: f0 92 00 01 sts 0x0100, r15 buff[1] = 0xce; // rjmp 0x1d00 instruction 1e1e: e0 92 01 01 sts 0x0101, r14 } #endif // Copy buffer into programming buffer bufPtr = buff; addrPtr = (uint16_t)(void*)address; 1e22: 40 91 80 01 lds r20, 0x0180 1e26: 50 91 81 01 lds r21, 0x0181 1e2a: a0 e0 ldi r26, 0x00 ; 0 1e2c: b1 e0 ldi r27, 0x01 ; 1 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; 1e2e: 2c 91 ld r18, X 1e30: 30 e0 ldi r19, 0x00 ; 0 a |= (*bufPtr++) << 8; 1e32: 11 96 adiw r26, 0x01 ; 1 1e34: 8c 91 ld r24, X 1e36: 11 97 sbiw r26, 0x01 ; 1 1e38: 90 e0 ldi r25, 0x00 ; 0 1e3a: 98 2f mov r25, r24 1e3c: 88 27 eor r24, r24 1e3e: 82 2b or r24, r18 1e40: 93 2b or r25, r19 #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 1e42: 12 96 adiw r26, 0x02 ; 2 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; a |= (*bufPtr++) << 8; __boot_page_fill_short((uint16_t)(void*)addrPtr,a); 1e44: fa 01 movw r30, r20 1e46: 0c 01 movw r0, r24 1e48: d7 be out 0x37, r13 ; 55 1e4a: e8 95 spm 1e4c: 11 24 eor r1, r1 addrPtr += 2; 1e4e: 4e 5f subi r20, 0xFE ; 254 1e50: 5f 4f sbci r21, 0xFF ; 255 } while (--ch); 1e52: f1 e0 ldi r31, 0x01 ; 1 1e54: a0 34 cpi r26, 0x40 ; 64 1e56: bf 07 cpc r27, r31 1e58: 51 f7 brne .-44 ; 0x1e2e // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 1e5a: e0 91 80 01 lds r30, 0x0180 1e5e: f0 91 81 01 lds r31, 0x0181 1e62: c7 be out 0x37, r12 ; 55 1e64: e8 95 spm boot_spm_busy_wait(); 1e66: 07 b6 in r0, 0x37 ; 55 1e68: 00 fc sbrc r0, 0 1e6a: fd cf rjmp .-6 ; 0x1e66 1e6c: 41 c0 rjmp .+130 ; 0x1ef0 boot_rww_enable(); #endif } /* Read memory block mode, length is big endian. */ else if(ch == STK_READ_PAGE) { 1e6e: 84 37 cpi r24, 0x74 ; 116 1e70: 89 f5 brne .+98 ; 0x1ed4 // READ PAGE - we only read flash getLen(); 1e72: 64 d0 rcall .+200 ; 0x1f3c verifySpace(); 1e74: 71 d0 rcall .+226 ; 0x1f58 #ifdef VIRTUAL_BOOT_PARTITION do { // Undo vector patch in bottom page so verify passes if (address == 0) ch=rstVect & 0xff; 1e76: e0 91 80 01 lds r30, 0x0180 1e7a: f0 91 81 01 lds r31, 0x0181 1e7e: 30 97 sbiw r30, 0x00 ; 0 1e80: 19 f4 brne .+6 ; 0x1e88 1e82: 20 91 84 01 lds r18, 0x0184 1e86: 13 c0 rjmp .+38 ; 0x1eae else if (address == 1) ch=rstVect >> 8; 1e88: e1 30 cpi r30, 0x01 ; 1 1e8a: f1 05 cpc r31, r1 1e8c: 19 f4 brne .+6 ; 0x1e94 1e8e: 20 91 85 01 lds r18, 0x0185 1e92: 0d c0 rjmp .+26 ; 0x1eae else if (address == 8) ch=wdtVect & 0xff; 1e94: e8 30 cpi r30, 0x08 ; 8 1e96: f1 05 cpc r31, r1 1e98: 19 f4 brne .+6 ; 0x1ea0 1e9a: 20 91 86 01 lds r18, 0x0186 1e9e: 07 c0 rjmp .+14 ; 0x1eae else if (address == 9) ch=wdtVect >> 8; 1ea0: e9 30 cpi r30, 0x09 ; 9 1ea2: f1 05 cpc r31, r1 1ea4: 19 f4 brne .+6 ; 0x1eac 1ea6: 20 91 87 01 lds r18, 0x0187 1eaa: 01 c0 rjmp .+2 ; 0x1eae else ch = pgm_read_byte_near(address); 1eac: 24 91 lpm r18, Z+ address++; 1eae: 80 91 80 01 lds r24, 0x0180 1eb2: 90 91 81 01 lds r25, 0x0181 1eb6: 01 96 adiw r24, 0x01 ; 1 1eb8: 90 93 81 01 sts 0x0181, r25 1ebc: 80 93 80 01 sts 0x0180, r24 putch(ch); 1ec0: 82 2f mov r24, r18 1ec2: 19 d0 rcall .+50 ; 0x1ef6 } while (--length); 1ec4: 80 91 82 01 lds r24, 0x0182 1ec8: 81 50 subi r24, 0x01 ; 1 1eca: 80 93 82 01 sts 0x0182, r24 1ece: 88 23 and r24, r24 1ed0: 91 f6 brne .-92 ; 0x1e76 1ed2: 0e c0 rjmp .+28 ; 0x1ef0 #endif #endif } /* Get device signature bytes */ else if(ch == STK_READ_SIGN) { 1ed4: 85 37 cpi r24, 0x75 ; 117 1ed6: 39 f4 brne .+14 ; 0x1ee6 // READ SIGN - return what Avrdude wants to hear verifySpace(); 1ed8: 3f d0 rcall .+126 ; 0x1f58 putch(SIGNATURE_0); 1eda: 8e e1 ldi r24, 0x1E ; 30 1edc: 0c d0 rcall .+24 ; 0x1ef6 putch(SIGNATURE_1); 1ede: 83 e9 ldi r24, 0x93 ; 147 1ee0: 0a d0 rcall .+20 ; 0x1ef6 putch(SIGNATURE_2); 1ee2: 8c e0 ldi r24, 0x0C ; 12 1ee4: 54 cf rjmp .-344 ; 0x1d8e } else if (ch == 'Q') { 1ee6: 81 35 cpi r24, 0x51 ; 81 1ee8: 11 f4 brne .+4 ; 0x1eee // Adaboot no-wait mod watchdogConfig(WATCHDOG_16MS); 1eea: 88 e0 ldi r24, 0x08 ; 8 1eec: 2c d0 rcall .+88 ; 0x1f46 verifySpace(); } else { // This covers the response to commands like STK_ENTER_PROGMODE verifySpace(); 1eee: 34 d0 rcall .+104 ; 0x1f58 } putch(STK_OK); 1ef0: 80 e1 ldi r24, 0x10 ; 16 1ef2: 01 d0 rcall .+2 ; 0x1ef6 1ef4: 25 cf rjmp .-438 ; 0x1d40 00001ef6 : void putch(char ch) { #ifndef SOFT_UART while (!(UCSR0A & _BV(UDRE0))); UDR0 = ch; #else __asm__ __volatile__ ( 1ef6: 2a e0 ldi r18, 0x0A ; 10 1ef8: 30 e0 ldi r19, 0x00 ; 0 1efa: 80 95 com r24 1efc: 08 94 sec 1efe: 10 f4 brcc .+4 ; 0x1f04 1f00: da 98 cbi 0x1b, 2 ; 27 1f02: 02 c0 rjmp .+4 ; 0x1f08 1f04: da 9a sbi 0x1b, 2 ; 27 1f06: 00 00 nop 1f08: 15 d0 rcall .+42 ; 0x1f34 1f0a: 14 d0 rcall .+40 ; 0x1f34 1f0c: 86 95 lsr r24 1f0e: 2a 95 dec r18 1f10: b1 f7 brne .-20 ; 0x1efe [uartBit] "I" (UART_TX_BIT) : "r25" ); #endif } 1f12: 08 95 ret 00001f14 : return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 1f14: a8 95 wdr LED_PIN |= _BV(LED); #endif #endif return ch; } 1f16: 29 e0 ldi r18, 0x09 ; 9 1f18: 30 e0 ldi r19, 0x00 ; 0 1f1a: cb 99 sbic 0x19, 3 ; 25 1f1c: fe cf rjmp .-4 ; 0x1f1a 1f1e: 0a d0 rcall .+20 ; 0x1f34 1f20: 09 d0 rcall .+18 ; 0x1f34 1f22: 08 d0 rcall .+16 ; 0x1f34 1f24: 88 94 clc 1f26: cb 99 sbic 0x19, 3 ; 25 1f28: 08 94 sec 1f2a: 2a 95 dec r18 1f2c: 11 f0 breq .+4 ; 0x1f32 1f2e: 87 95 ror r24 1f30: f7 cf rjmp .-18 ; 0x1f20 1f32: 08 95 ret 00001f34 : #if UART_B_VALUE > 255 #error Baud rate too slow for soft UART #endif void uartDelay() { __asm__ __volatile__ ( 1f34: 9e e0 ldi r25, 0x0E ; 14 1f36: 9a 95 dec r25 1f38: f1 f7 brne .-4 ; 0x1f36 1f3a: 08 95 ret 00001f3c : } while (--count); } #endif uint8_t getLen() { getch(); 1f3c: eb df rcall .-42 ; 0x1f14 length = getch(); 1f3e: ea df rcall .-44 ; 0x1f14 1f40: 80 93 82 01 sts 0x0182, r24 return getch(); } 1f44: e7 cf rjmp .-50 ; 0x1f14 00001f46 : "wdr\n" ); } void watchdogConfig(uint8_t x) { WDTCSR = _BV(WDCE) | _BV(WDE); 1f46: 98 e1 ldi r25, 0x18 ; 24 1f48: 91 bd out 0x21, r25 ; 33 WDTCSR = x; 1f4a: 81 bd out 0x21, r24 ; 33 } 1f4c: 08 95 ret 00001f4e : void appStart() { watchdogConfig(WATCHDOG_OFF); 1f4e: 80 e0 ldi r24, 0x00 ; 0 1f50: fa df rcall .-12 ; 0x1f46 __asm__ __volatile__ ( 1f52: e4 e0 ldi r30, 0x04 ; 4 1f54: ff 27 eor r31, r31 1f56: 09 94 ijmp 00001f58 : do getch(); while (--count); verifySpace(); } void verifySpace() { if (getch() != CRC_EOP) appStart(); 1f58: dd df rcall .-70 ; 0x1f14 1f5a: 80 32 cpi r24, 0x20 ; 32 1f5c: 09 f0 breq .+2 ; 0x1f60 1f5e: f7 df rcall .-18 ; 0x1f4e putch(STK_INSYNC); 1f60: 84 e1 ldi r24, 0x14 ; 20 } 1f62: c9 cf rjmp .-110 ; 0x1ef6 00001f64 : ::[count] "M" (UART_B_VALUE) ); } #endif void getNch(uint8_t count) { 1f64: 1f 93 push r17 1f66: 18 2f mov r17, r24 do getch(); while (--count); 1f68: d5 df rcall .-86 ; 0x1f14 1f6a: 11 50 subi r17, 0x01 ; 1 1f6c: e9 f7 brne .-6 ; 0x1f68 verifySpace(); 1f6e: f4 df rcall .-24 ; 0x1f58 } 1f70: 1f 91 pop r17 1f72: 08 95 ret