optiboot_lilypad.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .text 000001fc 00003e00 00003e00 00000054 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 1 .version 00000002 00003ffe 00003ffe 00000250 2**0 CONTENTS, READONLY 2 .debug_aranges 00000028 00000000 00000000 00000252 2**0 CONTENTS, READONLY, DEBUGGING 3 .debug_pubnames 0000006a 00000000 00000000 0000027a 2**0 CONTENTS, READONLY, DEBUGGING 4 .debug_info 00000285 00000000 00000000 000002e4 2**0 CONTENTS, READONLY, DEBUGGING 5 .debug_abbrev 0000019f 00000000 00000000 00000569 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_line 00000453 00000000 00000000 00000708 2**0 CONTENTS, READONLY, DEBUGGING 7 .debug_frame 00000090 00000000 00000000 00000b5c 2**2 CONTENTS, READONLY, DEBUGGING 8 .debug_str 00000141 00000000 00000000 00000bec 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_loc 000001e1 00000000 00000000 00000d2d 2**0 CONTENTS, READONLY, DEBUGGING 10 .debug_ranges 00000068 00000000 00000000 00000f0e 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00003e00
: #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 3e00: 11 24 eor r1, r1 #ifdef __AVR_ATmega8__ SP=RAMEND; // This is done by hardware reset #endif // Adaboot no-wait mod ch = MCUSR; 3e02: 84 b7 in r24, 0x34 ; 52 MCUSR = 0; 3e04: 14 be out 0x34, r1 ; 52 if (!(ch & _BV(EXTRF))) appStart(); 3e06: 81 ff sbrs r24, 1 3e08: e6 d0 rcall .+460 ; 0x3fd6 #if LED_START_FLASHES > 0 // Set up Timer 1 for timeout counter TCCR1B = _BV(CS12) | _BV(CS10); // div 1024 3e0a: 85 e0 ldi r24, 0x05 ; 5 3e0c: 80 93 81 00 sts 0x0081, r24 UCSRA = _BV(U2X); //Double speed mode USART UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1 UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); #else UCSR0A = _BV(U2X0); //Double speed mode USART0 3e10: 82 e0 ldi r24, 0x02 ; 2 3e12: 80 93 c0 00 sts 0x00C0, r24 UCSR0B = _BV(RXEN0) | _BV(TXEN0); 3e16: 88 e1 ldi r24, 0x18 ; 24 3e18: 80 93 c1 00 sts 0x00C1, r24 UCSR0C = _BV(UCSZ00) | _BV(UCSZ01); 3e1c: 86 e0 ldi r24, 0x06 ; 6 3e1e: 80 93 c2 00 sts 0x00C2, r24 UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); 3e22: 88 e0 ldi r24, 0x08 ; 8 3e24: 80 93 c4 00 sts 0x00C4, r24 #endif #endif // Set up watchdog to trigger after 500ms watchdogConfig(WATCHDOG_1S); 3e28: 8e e0 ldi r24, 0x0E ; 14 3e2a: cf d0 rcall .+414 ; 0x3fca /* Set LED pin as output */ LED_DDR |= _BV(LED); 3e2c: 25 9a sbi 0x04, 5 ; 4 3e2e: 86 e0 ldi r24, 0x06 ; 6 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 3e30: 28 e1 ldi r18, 0x18 ; 24 3e32: 3e ef ldi r19, 0xFE ; 254 TIFR1 = _BV(TOV1); 3e34: 91 e0 ldi r25, 0x01 ; 1 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 3e36: 30 93 85 00 sts 0x0085, r19 3e3a: 20 93 84 00 sts 0x0084, r18 TIFR1 = _BV(TOV1); 3e3e: 96 bb out 0x16, r25 ; 22 while(!(TIFR1 & _BV(TOV1))); 3e40: b0 9b sbis 0x16, 0 ; 22 3e42: fe cf rjmp .-4 ; 0x3e40 #ifdef __AVR_ATmega8__ LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); 3e44: 1d 9a sbi 0x03, 5 ; 3 return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 3e46: a8 95 wdr LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); #endif watchdogReset(); } while (--count); 3e48: 81 50 subi r24, 0x01 ; 1 3e4a: a9 f7 brne .-22 ; 0x3e36 /* get character from UART */ ch = getch(); if(ch == STK_GET_PARAMETER) { // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 3e4c: dd 24 eor r13, r13 3e4e: d3 94 inc r13 __boot_page_fill_short((uint16_t)(void*)addrPtr,a); addrPtr += 2; } while (--ch); // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 3e50: a5 e0 ldi r26, 0x05 ; 5 3e52: ea 2e mov r14, r26 boot_spm_busy_wait(); #if defined(RWWSRE) // Reenable read access to flash boot_rww_enable(); 3e54: f1 e1 ldi r31, 0x11 ; 17 3e56: ff 2e mov r15, r31 #endif /* Forever loop */ for (;;) { /* get character from UART */ ch = getch(); 3e58: ab d0 rcall .+342 ; 0x3fb0 if(ch == STK_GET_PARAMETER) { 3e5a: 81 34 cpi r24, 0x41 ; 65 3e5c: 21 f4 brne .+8 ; 0x3e66 // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 3e5e: 81 e0 ldi r24, 0x01 ; 1 3e60: c5 d0 rcall .+394 ; 0x3fec putch(0x03); 3e62: 83 e0 ldi r24, 0x03 ; 3 3e64: 20 c0 rjmp .+64 ; 0x3ea6 } else if(ch == STK_SET_DEVICE) { 3e66: 82 34 cpi r24, 0x42 ; 66 3e68: 11 f4 brne .+4 ; 0x3e6e // SET DEVICE is ignored getNch(20); 3e6a: 84 e1 ldi r24, 0x14 ; 20 3e6c: 03 c0 rjmp .+6 ; 0x3e74 } else if(ch == STK_SET_DEVICE_EXT) { 3e6e: 85 34 cpi r24, 0x45 ; 69 3e70: 19 f4 brne .+6 ; 0x3e78 // SET DEVICE EXT is ignored getNch(5); 3e72: 85 e0 ldi r24, 0x05 ; 5 3e74: bb d0 rcall .+374 ; 0x3fec 3e76: 91 c0 rjmp .+290 ; 0x3f9a } else if(ch == STK_LOAD_ADDRESS) { 3e78: 85 35 cpi r24, 0x55 ; 85 3e7a: 81 f4 brne .+32 ; 0x3e9c // LOAD ADDRESS uint16_t newAddress; newAddress = getch(); 3e7c: 99 d0 rcall .+306 ; 0x3fb0 newAddress = (newAddress & 0xff) | (getch() << 8); 3e7e: 08 2f mov r16, r24 3e80: 10 e0 ldi r17, 0x00 ; 0 3e82: 96 d0 rcall .+300 ; 0x3fb0 3e84: 90 e0 ldi r25, 0x00 ; 0 3e86: 98 2f mov r25, r24 3e88: 88 27 eor r24, r24 3e8a: 80 2b or r24, r16 3e8c: 91 2b or r25, r17 #ifdef RAMPZ // Transfer top bit to RAMPZ RAMPZ = (newAddress & 0x8000) ? 1 : 0; #endif newAddress += newAddress; // Convert from word address to byte address 3e8e: 88 0f add r24, r24 3e90: 99 1f adc r25, r25 address = newAddress; 3e92: 90 93 01 02 sts 0x0201, r25 3e96: 80 93 00 02 sts 0x0200, r24 3e9a: 7e c0 rjmp .+252 ; 0x3f98 verifySpace(); } else if(ch == STK_UNIVERSAL) { 3e9c: 86 35 cpi r24, 0x56 ; 86 3e9e: 29 f4 brne .+10 ; 0x3eaa // UNIVERSAL command is ignored getNch(4); 3ea0: 84 e0 ldi r24, 0x04 ; 4 3ea2: a4 d0 rcall .+328 ; 0x3fec putch(0x00); 3ea4: 80 e0 ldi r24, 0x00 ; 0 3ea6: 7c d0 rcall .+248 ; 0x3fa0 3ea8: 78 c0 rjmp .+240 ; 0x3f9a } /* Write memory, length is big endian and is in bytes */ else if(ch == STK_PROG_PAGE) { 3eaa: 84 36 cpi r24, 0x64 ; 100 3eac: 09 f0 breq .+2 ; 0x3eb0 3eae: 4e c0 rjmp .+156 ; 0x3f4c // PROGRAM PAGE - we support flash programming only, not EEPROM uint8_t *bufPtr; uint16_t addrPtr; getLen(); 3eb0: 87 d0 rcall .+270 ; 0x3fc0 // If we are in RWW section, immediately start page erase if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); 3eb2: e0 91 00 02 lds r30, 0x0200 3eb6: f0 91 01 02 lds r31, 0x0201 3eba: 88 e3 ldi r24, 0x38 ; 56 3ebc: e0 30 cpi r30, 0x00 ; 0 3ebe: f8 07 cpc r31, r24 3ec0: 18 f4 brcc .+6 ; 0x3ec8 3ec2: 83 e0 ldi r24, 0x03 ; 3 3ec4: 87 bf out 0x37, r24 ; 55 3ec6: e8 95 spm 3ec8: c0 e0 ldi r28, 0x00 ; 0 3eca: d1 e0 ldi r29, 0x01 ; 1 // While that is going on, read in page contents bufPtr = buff; do *bufPtr++ = getch(); 3ecc: 71 d0 rcall .+226 ; 0x3fb0 3ece: 89 93 st Y+, r24 while (--length); 3ed0: 80 91 02 02 lds r24, 0x0202 3ed4: 81 50 subi r24, 0x01 ; 1 3ed6: 80 93 02 02 sts 0x0202, r24 3eda: 88 23 and r24, r24 3edc: b9 f7 brne .-18 ; 0x3ecc // If we are in NRWW section, page erase has to be delayed until now. // Todo: Take RAMPZ into account if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); 3ede: e0 91 00 02 lds r30, 0x0200 3ee2: f0 91 01 02 lds r31, 0x0201 3ee6: 88 e3 ldi r24, 0x38 ; 56 3ee8: e0 30 cpi r30, 0x00 ; 0 3eea: f8 07 cpc r31, r24 3eec: 18 f0 brcs .+6 ; 0x3ef4 3eee: 83 e0 ldi r24, 0x03 ; 3 3ef0: 87 bf out 0x37, r24 ; 55 3ef2: e8 95 spm // Read command terminator, start reply verifySpace(); 3ef4: 75 d0 rcall .+234 ; 0x3fe0 // If only a partial page is to be programmed, the erase might not be complete. // So check that here boot_spm_busy_wait(); 3ef6: 07 b6 in r0, 0x37 ; 55 3ef8: 00 fc sbrc r0, 0 3efa: fd cf rjmp .-6 ; 0x3ef6 } #endif // Copy buffer into programming buffer bufPtr = buff; addrPtr = (uint16_t)(void*)address; 3efc: 40 91 00 02 lds r20, 0x0200 3f00: 50 91 01 02 lds r21, 0x0201 3f04: a0 e0 ldi r26, 0x00 ; 0 3f06: b1 e0 ldi r27, 0x01 ; 1 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; 3f08: 2c 91 ld r18, X 3f0a: 30 e0 ldi r19, 0x00 ; 0 a |= (*bufPtr++) << 8; 3f0c: 11 96 adiw r26, 0x01 ; 1 3f0e: 8c 91 ld r24, X 3f10: 11 97 sbiw r26, 0x01 ; 1 3f12: 90 e0 ldi r25, 0x00 ; 0 3f14: 98 2f mov r25, r24 3f16: 88 27 eor r24, r24 3f18: 82 2b or r24, r18 3f1a: 93 2b or r25, r19 #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 3f1c: 12 96 adiw r26, 0x02 ; 2 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; a |= (*bufPtr++) << 8; __boot_page_fill_short((uint16_t)(void*)addrPtr,a); 3f1e: fa 01 movw r30, r20 3f20: 0c 01 movw r0, r24 3f22: d7 be out 0x37, r13 ; 55 3f24: e8 95 spm 3f26: 11 24 eor r1, r1 addrPtr += 2; 3f28: 4e 5f subi r20, 0xFE ; 254 3f2a: 5f 4f sbci r21, 0xFF ; 255 } while (--ch); 3f2c: f1 e0 ldi r31, 0x01 ; 1 3f2e: a0 38 cpi r26, 0x80 ; 128 3f30: bf 07 cpc r27, r31 3f32: 51 f7 brne .-44 ; 0x3f08 // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 3f34: e0 91 00 02 lds r30, 0x0200 3f38: f0 91 01 02 lds r31, 0x0201 3f3c: e7 be out 0x37, r14 ; 55 3f3e: e8 95 spm boot_spm_busy_wait(); 3f40: 07 b6 in r0, 0x37 ; 55 3f42: 00 fc sbrc r0, 0 3f44: fd cf rjmp .-6 ; 0x3f40 #if defined(RWWSRE) // Reenable read access to flash boot_rww_enable(); 3f46: f7 be out 0x37, r15 ; 55 3f48: e8 95 spm 3f4a: 27 c0 rjmp .+78 ; 0x3f9a #endif } /* Read memory block mode, length is big endian. */ else if(ch == STK_READ_PAGE) { 3f4c: 84 37 cpi r24, 0x74 ; 116 3f4e: b9 f4 brne .+46 ; 0x3f7e // READ PAGE - we only read flash getLen(); 3f50: 37 d0 rcall .+110 ; 0x3fc0 verifySpace(); 3f52: 46 d0 rcall .+140 ; 0x3fe0 putch(result); address++; } while (--length); #else do putch(pgm_read_byte_near(address++)); 3f54: e0 91 00 02 lds r30, 0x0200 3f58: f0 91 01 02 lds r31, 0x0201 3f5c: 31 96 adiw r30, 0x01 ; 1 3f5e: f0 93 01 02 sts 0x0201, r31 3f62: e0 93 00 02 sts 0x0200, r30 3f66: 31 97 sbiw r30, 0x01 ; 1 3f68: e4 91 lpm r30, Z+ 3f6a: 8e 2f mov r24, r30 3f6c: 19 d0 rcall .+50 ; 0x3fa0 while (--length); 3f6e: 80 91 02 02 lds r24, 0x0202 3f72: 81 50 subi r24, 0x01 ; 1 3f74: 80 93 02 02 sts 0x0202, r24 3f78: 88 23 and r24, r24 3f7a: 61 f7 brne .-40 ; 0x3f54 3f7c: 0e c0 rjmp .+28 ; 0x3f9a #endif #endif } /* Get device signature bytes */ else if(ch == STK_READ_SIGN) { 3f7e: 85 37 cpi r24, 0x75 ; 117 3f80: 39 f4 brne .+14 ; 0x3f90 // READ SIGN - return what Avrdude wants to hear verifySpace(); 3f82: 2e d0 rcall .+92 ; 0x3fe0 putch(SIGNATURE_0); 3f84: 8e e1 ldi r24, 0x1E ; 30 3f86: 0c d0 rcall .+24 ; 0x3fa0 putch(SIGNATURE_1); 3f88: 84 e9 ldi r24, 0x94 ; 148 3f8a: 0a d0 rcall .+20 ; 0x3fa0 putch(SIGNATURE_2); 3f8c: 86 e0 ldi r24, 0x06 ; 6 3f8e: 8b cf rjmp .-234 ; 0x3ea6 } else if (ch == 'Q') { 3f90: 81 35 cpi r24, 0x51 ; 81 3f92: 11 f4 brne .+4 ; 0x3f98 // Adaboot no-wait mod watchdogConfig(WATCHDOG_16MS); 3f94: 88 e0 ldi r24, 0x08 ; 8 3f96: 19 d0 rcall .+50 ; 0x3fca verifySpace(); } else { // This covers the response to commands like STK_ENTER_PROGMODE verifySpace(); 3f98: 23 d0 rcall .+70 ; 0x3fe0 } putch(STK_OK); 3f9a: 80 e1 ldi r24, 0x10 ; 16 3f9c: 01 d0 rcall .+2 ; 0x3fa0 3f9e: 5c cf rjmp .-328 ; 0x3e58 00003fa0 : } } void putch(char ch) { 3fa0: 98 2f mov r25, r24 #ifndef SOFT_UART while (!(UCSR0A & _BV(UDRE0))); 3fa2: 80 91 c0 00 lds r24, 0x00C0 3fa6: 85 ff sbrs r24, 5 3fa8: fc cf rjmp .-8 ; 0x3fa2 UDR0 = ch; 3faa: 90 93 c6 00 sts 0x00C6, r25 [uartBit] "I" (UART_TX_BIT) : "r25" ); #endif } 3fae: 08 95 ret 00003fb0 : return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 3fb0: a8 95 wdr [uartBit] "I" (UART_RX_BIT) : "r25" ); #else while(!(UCSR0A & _BV(RXC0))); 3fb2: 80 91 c0 00 lds r24, 0x00C0 3fb6: 87 ff sbrs r24, 7 3fb8: fc cf rjmp .-8 ; 0x3fb2 ch = UDR0; 3fba: 80 91 c6 00 lds r24, 0x00C6 LED_PIN |= _BV(LED); #endif #endif return ch; } 3fbe: 08 95 ret 00003fc0 : } while (--count); } #endif uint8_t getLen() { getch(); 3fc0: f7 df rcall .-18 ; 0x3fb0 length = getch(); 3fc2: f6 df rcall .-20 ; 0x3fb0 3fc4: 80 93 02 02 sts 0x0202, r24 return getch(); } 3fc8: f3 cf rjmp .-26 ; 0x3fb0 00003fca : "wdr\n" ); } void watchdogConfig(uint8_t x) { WDTCSR = _BV(WDCE) | _BV(WDE); 3fca: e0 e6 ldi r30, 0x60 ; 96 3fcc: f0 e0 ldi r31, 0x00 ; 0 3fce: 98 e1 ldi r25, 0x18 ; 24 3fd0: 90 83 st Z, r25 WDTCSR = x; 3fd2: 80 83 st Z, r24 } 3fd4: 08 95 ret 00003fd6 : void appStart() { watchdogConfig(WATCHDOG_OFF); 3fd6: 80 e0 ldi r24, 0x00 ; 0 3fd8: f8 df rcall .-16 ; 0x3fca __asm__ __volatile__ ( 3fda: ee 27 eor r30, r30 3fdc: ff 27 eor r31, r31 3fde: 09 94 ijmp 00003fe0 : do getch(); while (--count); verifySpace(); } void verifySpace() { if (getch() != CRC_EOP) appStart(); 3fe0: e7 df rcall .-50 ; 0x3fb0 3fe2: 80 32 cpi r24, 0x20 ; 32 3fe4: 09 f0 breq .+2 ; 0x3fe8 3fe6: f7 df rcall .-18 ; 0x3fd6 putch(STK_INSYNC); 3fe8: 84 e1 ldi r24, 0x14 ; 20 } 3fea: da cf rjmp .-76 ; 0x3fa0 00003fec : ::[count] "M" (UART_B_VALUE) ); } #endif void getNch(uint8_t count) { 3fec: 1f 93 push r17 3fee: 18 2f mov r17, r24 do getch(); while (--count); 3ff0: df df rcall .-66 ; 0x3fb0 3ff2: 11 50 subi r17, 0x01 ; 1 3ff4: e9 f7 brne .-6 ; 0x3ff0 verifySpace(); 3ff6: f4 df rcall .-24 ; 0x3fe0 } 3ff8: 1f 91 pop r17 3ffa: 08 95 ret