optiboot_atmega328_pro_8MHz.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .text 000001fc 00000000 00000000 00000054 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 1 .version 00000002 00007ffe 00007ffe 00000250 2**0 CONTENTS, READONLY 2 .debug_aranges 00000028 00000000 00000000 00000252 2**0 CONTENTS, READONLY, DEBUGGING 3 .debug_pubnames 0000006a 00000000 00000000 0000027a 2**0 CONTENTS, READONLY, DEBUGGING 4 .debug_info 00000285 00000000 00000000 000002e4 2**0 CONTENTS, READONLY, DEBUGGING 5 .debug_abbrev 0000019f 00000000 00000000 00000569 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_line 00000453 00000000 00000000 00000708 2**0 CONTENTS, READONLY, DEBUGGING 7 .debug_frame 00000090 00000000 00000000 00000b5c 2**2 CONTENTS, READONLY, DEBUGGING 8 .debug_str 00000141 00000000 00000000 00000bec 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_loc 000001e1 00000000 00000000 00000d2d 2**0 CONTENTS, READONLY, DEBUGGING 10 .debug_ranges 00000068 00000000 00000000 00000f0e 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00000000
: #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 0: 11 24 eor r1, r1 #ifdef __AVR_ATmega8__ SP=RAMEND; // This is done by hardware reset #endif // Adaboot no-wait mod ch = MCUSR; 2: 84 b7 in r24, 0x34 ; 52 MCUSR = 0; 4: 14 be out 0x34, r1 ; 52 if (!(ch & _BV(EXTRF))) appStart(); 6: 81 ff sbrs r24, 1 8: e6 d0 rcall .+460 ; 0x1d6 #if LED_START_FLASHES > 0 // Set up Timer 1 for timeout counter TCCR1B = _BV(CS12) | _BV(CS10); // div 1024 a: 85 e0 ldi r24, 0x05 ; 5 c: 80 93 81 00 sts 0x0081, r24 UCSRA = _BV(U2X); //Double speed mode USART UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1 UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); #else UCSR0A = _BV(U2X0); //Double speed mode USART0 10: 82 e0 ldi r24, 0x02 ; 2 12: 80 93 c0 00 sts 0x00C0, r24 UCSR0B = _BV(RXEN0) | _BV(TXEN0); 16: 88 e1 ldi r24, 0x18 ; 24 18: 80 93 c1 00 sts 0x00C1, r24 UCSR0C = _BV(UCSZ00) | _BV(UCSZ01); 1c: 86 e0 ldi r24, 0x06 ; 6 1e: 80 93 c2 00 sts 0x00C2, r24 UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); 22: 88 e0 ldi r24, 0x08 ; 8 24: 80 93 c4 00 sts 0x00C4, r24 #endif #endif // Set up watchdog to trigger after 500ms watchdogConfig(WATCHDOG_1S); 28: 8e e0 ldi r24, 0x0E ; 14 2a: cf d0 rcall .+414 ; 0x1ca /* Set LED pin as output */ LED_DDR |= _BV(LED); 2c: 25 9a sbi 0x04, 5 ; 4 2e: 86 e0 ldi r24, 0x06 ; 6 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 30: 28 e1 ldi r18, 0x18 ; 24 32: 3e ef ldi r19, 0xFE ; 254 TIFR1 = _BV(TOV1); 34: 91 e0 ldi r25, 0x01 ; 1 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 36: 30 93 85 00 sts 0x0085, r19 3a: 20 93 84 00 sts 0x0084, r18 TIFR1 = _BV(TOV1); 3e: 96 bb out 0x16, r25 ; 22 while(!(TIFR1 & _BV(TOV1))); 40: b0 9b sbis 0x16, 0 ; 22 42: fe cf rjmp .-4 ; 0x40 <__SREG__+0x1> #ifdef __AVR_ATmega8__ LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); 44: 1d 9a sbi 0x03, 5 ; 3 return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 46: a8 95 wdr LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); #endif watchdogReset(); } while (--count); 48: 81 50 subi r24, 0x01 ; 1 4a: a9 f7 brne .-22 ; 0x36 <__CCP__+0x2> /* get character from UART */ ch = getch(); if(ch == STK_GET_PARAMETER) { // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 4c: dd 24 eor r13, r13 4e: d3 94 inc r13 __boot_page_fill_short((uint16_t)(void*)addrPtr,a); addrPtr += 2; } while (--ch); // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 50: a5 e0 ldi r26, 0x05 ; 5 52: ea 2e mov r14, r26 boot_spm_busy_wait(); #if defined(RWWSRE) // Reenable read access to flash boot_rww_enable(); 54: f1 e1 ldi r31, 0x11 ; 17 56: ff 2e mov r15, r31 #endif /* Forever loop */ for (;;) { /* get character from UART */ ch = getch(); 58: ab d0 rcall .+342 ; 0x1b0 if(ch == STK_GET_PARAMETER) { 5a: 81 34 cpi r24, 0x41 ; 65 5c: 21 f4 brne .+8 ; 0x66 <__SREG__+0x27> // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 5e: 81 e0 ldi r24, 0x01 ; 1 60: c5 d0 rcall .+394 ; 0x1ec putch(0x03); 62: 83 e0 ldi r24, 0x03 ; 3 64: 20 c0 rjmp .+64 ; 0xa6 <__SREG__+0x67> } else if(ch == STK_SET_DEVICE) { 66: 82 34 cpi r24, 0x42 ; 66 68: 11 f4 brne .+4 ; 0x6e <__SREG__+0x2f> // SET DEVICE is ignored getNch(20); 6a: 84 e1 ldi r24, 0x14 ; 20 6c: 03 c0 rjmp .+6 ; 0x74 <__SREG__+0x35> } else if(ch == STK_SET_DEVICE_EXT) { 6e: 85 34 cpi r24, 0x45 ; 69 70: 19 f4 brne .+6 ; 0x78 <__SREG__+0x39> // SET DEVICE EXT is ignored getNch(5); 72: 85 e0 ldi r24, 0x05 ; 5 74: bb d0 rcall .+374 ; 0x1ec 76: 91 c0 rjmp .+290 ; 0x19a <__SREG__+0x15b> } else if(ch == STK_LOAD_ADDRESS) { 78: 85 35 cpi r24, 0x55 ; 85 7a: 81 f4 brne .+32 ; 0x9c <__SREG__+0x5d> // LOAD ADDRESS uint16_t newAddress; newAddress = getch(); 7c: 99 d0 rcall .+306 ; 0x1b0 newAddress = (newAddress & 0xff) | (getch() << 8); 7e: 08 2f mov r16, r24 80: 10 e0 ldi r17, 0x00 ; 0 82: 96 d0 rcall .+300 ; 0x1b0 84: 90 e0 ldi r25, 0x00 ; 0 86: 98 2f mov r25, r24 88: 88 27 eor r24, r24 8a: 80 2b or r24, r16 8c: 91 2b or r25, r17 #ifdef RAMPZ // Transfer top bit to RAMPZ RAMPZ = (newAddress & 0x8000) ? 1 : 0; #endif newAddress += newAddress; // Convert from word address to byte address 8e: 88 0f add r24, r24 90: 99 1f adc r25, r25 address = newAddress; 92: 90 93 01 02 sts 0x0201, r25 96: 80 93 00 02 sts 0x0200, r24 9a: 7e c0 rjmp .+252 ; 0x198 <__SREG__+0x159> verifySpace(); } else if(ch == STK_UNIVERSAL) { 9c: 86 35 cpi r24, 0x56 ; 86 9e: 29 f4 brne .+10 ; 0xaa <__SREG__+0x6b> // UNIVERSAL command is ignored getNch(4); a0: 84 e0 ldi r24, 0x04 ; 4 a2: a4 d0 rcall .+328 ; 0x1ec putch(0x00); a4: 80 e0 ldi r24, 0x00 ; 0 a6: 7c d0 rcall .+248 ; 0x1a0 a8: 78 c0 rjmp .+240 ; 0x19a <__SREG__+0x15b> } /* Write memory, length is big endian and is in bytes */ else if(ch == STK_PROG_PAGE) { aa: 84 36 cpi r24, 0x64 ; 100 ac: 09 f0 breq .+2 ; 0xb0 <__SREG__+0x71> ae: 4e c0 rjmp .+156 ; 0x14c <__SREG__+0x10d> // PROGRAM PAGE - we support flash programming only, not EEPROM uint8_t *bufPtr; uint16_t addrPtr; getLen(); b0: 87 d0 rcall .+270 ; 0x1c0 // If we are in RWW section, immediately start page erase if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); b2: e0 91 00 02 lds r30, 0x0200 b6: f0 91 01 02 lds r31, 0x0201 ba: 80 e7 ldi r24, 0x70 ; 112 bc: e0 30 cpi r30, 0x00 ; 0 be: f8 07 cpc r31, r24 c0: 18 f4 brcc .+6 ; 0xc8 <__SREG__+0x89> c2: 83 e0 ldi r24, 0x03 ; 3 c4: 87 bf out 0x37, r24 ; 55 c6: e8 95 spm c8: c0 e0 ldi r28, 0x00 ; 0 ca: d1 e0 ldi r29, 0x01 ; 1 // While that is going on, read in page contents bufPtr = buff; do *bufPtr++ = getch(); cc: 71 d0 rcall .+226 ; 0x1b0 ce: 89 93 st Y+, r24 while (--length); d0: 80 91 02 02 lds r24, 0x0202 d4: 81 50 subi r24, 0x01 ; 1 d6: 80 93 02 02 sts 0x0202, r24 da: 88 23 and r24, r24 dc: b9 f7 brne .-18 ; 0xcc <__SREG__+0x8d> // If we are in NRWW section, page erase has to be delayed until now. // Todo: Take RAMPZ into account if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); de: e0 91 00 02 lds r30, 0x0200 e2: f0 91 01 02 lds r31, 0x0201 e6: 80 e7 ldi r24, 0x70 ; 112 e8: e0 30 cpi r30, 0x00 ; 0 ea: f8 07 cpc r31, r24 ec: 18 f0 brcs .+6 ; 0xf4 <__SREG__+0xb5> ee: 83 e0 ldi r24, 0x03 ; 3 f0: 87 bf out 0x37, r24 ; 55 f2: e8 95 spm // Read command terminator, start reply verifySpace(); f4: 75 d0 rcall .+234 ; 0x1e0 // If only a partial page is to be programmed, the erase might not be complete. // So check that here boot_spm_busy_wait(); f6: 07 b6 in r0, 0x37 ; 55 f8: 00 fc sbrc r0, 0 fa: fd cf rjmp .-6 ; 0xf6 <__SREG__+0xb7> } #endif // Copy buffer into programming buffer bufPtr = buff; addrPtr = (uint16_t)(void*)address; fc: 40 91 00 02 lds r20, 0x0200 100: 50 91 01 02 lds r21, 0x0201 104: a0 e0 ldi r26, 0x00 ; 0 106: b1 e0 ldi r27, 0x01 ; 1 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; 108: 2c 91 ld r18, X 10a: 30 e0 ldi r19, 0x00 ; 0 a |= (*bufPtr++) << 8; 10c: 11 96 adiw r26, 0x01 ; 1 10e: 8c 91 ld r24, X 110: 11 97 sbiw r26, 0x01 ; 1 112: 90 e0 ldi r25, 0x00 ; 0 114: 98 2f mov r25, r24 116: 88 27 eor r24, r24 118: 82 2b or r24, r18 11a: 93 2b or r25, r19 #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 11c: 12 96 adiw r26, 0x02 ; 2 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; a |= (*bufPtr++) << 8; __boot_page_fill_short((uint16_t)(void*)addrPtr,a); 11e: fa 01 movw r30, r20 120: 0c 01 movw r0, r24 122: d7 be out 0x37, r13 ; 55 124: e8 95 spm 126: 11 24 eor r1, r1 addrPtr += 2; 128: 4e 5f subi r20, 0xFE ; 254 12a: 5f 4f sbci r21, 0xFF ; 255 } while (--ch); 12c: f1 e0 ldi r31, 0x01 ; 1 12e: a0 38 cpi r26, 0x80 ; 128 130: bf 07 cpc r27, r31 132: 51 f7 brne .-44 ; 0x108 <__SREG__+0xc9> // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 134: e0 91 00 02 lds r30, 0x0200 138: f0 91 01 02 lds r31, 0x0201 13c: e7 be out 0x37, r14 ; 55 13e: e8 95 spm boot_spm_busy_wait(); 140: 07 b6 in r0, 0x37 ; 55 142: 00 fc sbrc r0, 0 144: fd cf rjmp .-6 ; 0x140 <__SREG__+0x101> #if defined(RWWSRE) // Reenable read access to flash boot_rww_enable(); 146: f7 be out 0x37, r15 ; 55 148: e8 95 spm 14a: 27 c0 rjmp .+78 ; 0x19a <__SREG__+0x15b> #endif } /* Read memory block mode, length is big endian. */ else if(ch == STK_READ_PAGE) { 14c: 84 37 cpi r24, 0x74 ; 116 14e: b9 f4 brne .+46 ; 0x17e <__SREG__+0x13f> // READ PAGE - we only read flash getLen(); 150: 37 d0 rcall .+110 ; 0x1c0 verifySpace(); 152: 46 d0 rcall .+140 ; 0x1e0 putch(result); address++; } while (--length); #else do putch(pgm_read_byte_near(address++)); 154: e0 91 00 02 lds r30, 0x0200 158: f0 91 01 02 lds r31, 0x0201 15c: 31 96 adiw r30, 0x01 ; 1 15e: f0 93 01 02 sts 0x0201, r31 162: e0 93 00 02 sts 0x0200, r30 166: 31 97 sbiw r30, 0x01 ; 1 168: e4 91 lpm r30, Z+ 16a: 8e 2f mov r24, r30 16c: 19 d0 rcall .+50 ; 0x1a0 while (--length); 16e: 80 91 02 02 lds r24, 0x0202 172: 81 50 subi r24, 0x01 ; 1 174: 80 93 02 02 sts 0x0202, r24 178: 88 23 and r24, r24 17a: 61 f7 brne .-40 ; 0x154 <__SREG__+0x115> 17c: 0e c0 rjmp .+28 ; 0x19a <__SREG__+0x15b> #endif #endif } /* Get device signature bytes */ else if(ch == STK_READ_SIGN) { 17e: 85 37 cpi r24, 0x75 ; 117 180: 39 f4 brne .+14 ; 0x190 <__SREG__+0x151> // READ SIGN - return what Avrdude wants to hear verifySpace(); 182: 2e d0 rcall .+92 ; 0x1e0 putch(SIGNATURE_0); 184: 8e e1 ldi r24, 0x1E ; 30 186: 0c d0 rcall .+24 ; 0x1a0 putch(SIGNATURE_1); 188: 85 e9 ldi r24, 0x95 ; 149 18a: 0a d0 rcall .+20 ; 0x1a0 putch(SIGNATURE_2); 18c: 8f e0 ldi r24, 0x0F ; 15 18e: 8b cf rjmp .-234 ; 0xa6 <__SREG__+0x67> } else if (ch == 'Q') { 190: 81 35 cpi r24, 0x51 ; 81 192: 11 f4 brne .+4 ; 0x198 <__SREG__+0x159> // Adaboot no-wait mod watchdogConfig(WATCHDOG_16MS); 194: 88 e0 ldi r24, 0x08 ; 8 196: 19 d0 rcall .+50 ; 0x1ca verifySpace(); } else { // This covers the response to commands like STK_ENTER_PROGMODE verifySpace(); 198: 23 d0 rcall .+70 ; 0x1e0 } putch(STK_OK); 19a: 80 e1 ldi r24, 0x10 ; 16 19c: 01 d0 rcall .+2 ; 0x1a0 19e: 5c cf rjmp .-328 ; 0x58 <__SREG__+0x19> 000001a0 : } } void putch(char ch) { 1a0: 98 2f mov r25, r24 #ifndef SOFT_UART while (!(UCSR0A & _BV(UDRE0))); 1a2: 80 91 c0 00 lds r24, 0x00C0 1a6: 85 ff sbrs r24, 5 1a8: fc cf rjmp .-8 ; 0x1a2 UDR0 = ch; 1aa: 90 93 c6 00 sts 0x00C6, r25 [uartBit] "I" (UART_TX_BIT) : "r25" ); #endif } 1ae: 08 95 ret 000001b0 : return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 1b0: a8 95 wdr [uartBit] "I" (UART_RX_BIT) : "r25" ); #else while(!(UCSR0A & _BV(RXC0))); 1b2: 80 91 c0 00 lds r24, 0x00C0 1b6: 87 ff sbrs r24, 7 1b8: fc cf rjmp .-8 ; 0x1b2 ch = UDR0; 1ba: 80 91 c6 00 lds r24, 0x00C6 LED_PIN |= _BV(LED); #endif #endif return ch; } 1be: 08 95 ret 000001c0 : } while (--count); } #endif uint8_t getLen() { getch(); 1c0: f7 df rcall .-18 ; 0x1b0 length = getch(); 1c2: f6 df rcall .-20 ; 0x1b0 1c4: 80 93 02 02 sts 0x0202, r24 return getch(); } 1c8: f3 cf rjmp .-26 ; 0x1b0 000001ca : "wdr\n" ); } void watchdogConfig(uint8_t x) { WDTCSR = _BV(WDCE) | _BV(WDE); 1ca: e0 e6 ldi r30, 0x60 ; 96 1cc: f0 e0 ldi r31, 0x00 ; 0 1ce: 98 e1 ldi r25, 0x18 ; 24 1d0: 90 83 st Z, r25 WDTCSR = x; 1d2: 80 83 st Z, r24 } 1d4: 08 95 ret 000001d6 : void appStart() { watchdogConfig(WATCHDOG_OFF); 1d6: 80 e0 ldi r24, 0x00 ; 0 1d8: f8 df rcall .-16 ; 0x1ca __asm__ __volatile__ ( 1da: ee 27 eor r30, r30 1dc: ff 27 eor r31, r31 1de: 09 94 ijmp 000001e0 : do getch(); while (--count); verifySpace(); } void verifySpace() { if (getch() != CRC_EOP) appStart(); 1e0: e7 df rcall .-50 ; 0x1b0 1e2: 80 32 cpi r24, 0x20 ; 32 1e4: 09 f0 breq .+2 ; 0x1e8 1e6: f7 df rcall .-18 ; 0x1d6 putch(STK_INSYNC); 1e8: 84 e1 ldi r24, 0x14 ; 20 } 1ea: da cf rjmp .-76 ; 0x1a0 000001ec : ::[count] "M" (UART_B_VALUE) ); } #endif void getNch(uint8_t count) { 1ec: 1f 93 push r17 1ee: 18 2f mov r17, r24 do getch(); while (--count); 1f0: df df rcall .-66 ; 0x1b0 1f2: 11 50 subi r17, 0x01 ; 1 1f4: e9 f7 brne .-6 ; 0x1f0 verifySpace(); 1f6: f4 df rcall .-24 ; 0x1e0 } 1f8: 1f 91 pop r17 1fa: 08 95 ret