optiboot_atmega328_pro_8MHz.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .text 000001fc 00007e00 00007e00 00000054 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 1 .debug_aranges 00000028 00000000 00000000 00000250 2**0 CONTENTS, READONLY, DEBUGGING 2 .debug_pubnames 0000006a 00000000 00000000 00000278 2**0 CONTENTS, READONLY, DEBUGGING 3 .debug_info 00000284 00000000 00000000 000002e2 2**0 CONTENTS, READONLY, DEBUGGING 4 .debug_abbrev 000001ae 00000000 00000000 00000566 2**0 CONTENTS, READONLY, DEBUGGING 5 .debug_line 00000450 00000000 00000000 00000714 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_frame 00000090 00000000 00000000 00000b64 2**2 CONTENTS, READONLY, DEBUGGING 7 .debug_str 00000141 00000000 00000000 00000bf4 2**0 CONTENTS, READONLY, DEBUGGING 8 .debug_loc 000001e1 00000000 00000000 00000d35 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_ranges 00000068 00000000 00000000 00000f16 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00007e00
: #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 7e00: 11 24 eor r1, r1 #ifdef __AVR_ATmega8__ SP=RAMEND; // This is done by hardware reset #endif // Adaboot no-wait mod ch = MCUSR; 7e02: 84 b7 in r24, 0x34 ; 52 MCUSR = 0; 7e04: 14 be out 0x34, r1 ; 52 if (!(ch & _BV(EXTRF))) appStart(); 7e06: 81 ff sbrs r24, 1 7e08: e6 d0 rcall .+460 ; 0x7fd6 #if LED_START_FLASHES > 0 // Set up Timer 1 for timeout counter TCCR1B = _BV(CS12) | _BV(CS10); // div 1024 7e0a: 85 e0 ldi r24, 0x05 ; 5 7e0c: 80 93 81 00 sts 0x0081, r24 UCSRA = _BV(U2X); //Double speed mode USART UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1 UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); #else UCSR0A = _BV(U2X0); //Double speed mode USART0 7e10: 82 e0 ldi r24, 0x02 ; 2 7e12: 80 93 c0 00 sts 0x00C0, r24 UCSR0B = _BV(RXEN0) | _BV(TXEN0); 7e16: 88 e1 ldi r24, 0x18 ; 24 7e18: 80 93 c1 00 sts 0x00C1, r24 UCSR0C = _BV(UCSZ00) | _BV(UCSZ01); 7e1c: 86 e0 ldi r24, 0x06 ; 6 7e1e: 80 93 c2 00 sts 0x00C2, r24 UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); 7e22: 88 e0 ldi r24, 0x08 ; 8 7e24: 80 93 c4 00 sts 0x00C4, r24 #endif #endif // Set up watchdog to trigger after 500ms watchdogConfig(WATCHDOG_1S); 7e28: 8e e0 ldi r24, 0x0E ; 14 7e2a: cf d0 rcall .+414 ; 0x7fca /* Set LED pin as output */ LED_DDR |= _BV(LED); 7e2c: 25 9a sbi 0x04, 5 ; 4 7e2e: 86 e0 ldi r24, 0x06 ; 6 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 7e30: 28 e1 ldi r18, 0x18 ; 24 7e32: 3e ef ldi r19, 0xFE ; 254 TIFR1 = _BV(TOV1); 7e34: 91 e0 ldi r25, 0x01 ; 1 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 7e36: 30 93 85 00 sts 0x0085, r19 7e3a: 20 93 84 00 sts 0x0084, r18 TIFR1 = _BV(TOV1); 7e3e: 96 bb out 0x16, r25 ; 22 while(!(TIFR1 & _BV(TOV1))); 7e40: b0 9b sbis 0x16, 0 ; 22 7e42: fe cf rjmp .-4 ; 0x7e40 #ifdef __AVR_ATmega8__ LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); 7e44: 1d 9a sbi 0x03, 5 ; 3 return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 7e46: a8 95 wdr LED_PORT ^= _BV(LED); #else LED_PIN |= _BV(LED); #endif watchdogReset(); } while (--count); 7e48: 81 50 subi r24, 0x01 ; 1 7e4a: a9 f7 brne .-22 ; 0x7e36 /* get character from UART */ ch = getch(); if(ch == STK_GET_PARAMETER) { // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 7e4c: dd 24 eor r13, r13 7e4e: d3 94 inc r13 __boot_page_fill_short((uint16_t)(void*)addrPtr,a); addrPtr += 2; } while (--ch); // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 7e50: a5 e0 ldi r26, 0x05 ; 5 7e52: ea 2e mov r14, r26 boot_spm_busy_wait(); #if defined(RWWSRE) // Reenable read access to flash boot_rww_enable(); 7e54: f1 e1 ldi r31, 0x11 ; 17 7e56: ff 2e mov r15, r31 #endif /* Forever loop */ for (;;) { /* get character from UART */ ch = getch(); 7e58: ab d0 rcall .+342 ; 0x7fb0 if(ch == STK_GET_PARAMETER) { 7e5a: 81 34 cpi r24, 0x41 ; 65 7e5c: 21 f4 brne .+8 ; 0x7e66 // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 7e5e: 81 e0 ldi r24, 0x01 ; 1 7e60: c5 d0 rcall .+394 ; 0x7fec putch(0x03); 7e62: 83 e0 ldi r24, 0x03 ; 3 7e64: 20 c0 rjmp .+64 ; 0x7ea6 } else if(ch == STK_SET_DEVICE) { 7e66: 82 34 cpi r24, 0x42 ; 66 7e68: 11 f4 brne .+4 ; 0x7e6e // SET DEVICE is ignored getNch(20); 7e6a: 84 e1 ldi r24, 0x14 ; 20 7e6c: 03 c0 rjmp .+6 ; 0x7e74 } else if(ch == STK_SET_DEVICE_EXT) { 7e6e: 85 34 cpi r24, 0x45 ; 69 7e70: 19 f4 brne .+6 ; 0x7e78 // SET DEVICE EXT is ignored getNch(5); 7e72: 85 e0 ldi r24, 0x05 ; 5 7e74: bb d0 rcall .+374 ; 0x7fec 7e76: 91 c0 rjmp .+290 ; 0x7f9a } else if(ch == STK_LOAD_ADDRESS) { 7e78: 85 35 cpi r24, 0x55 ; 85 7e7a: 81 f4 brne .+32 ; 0x7e9c // LOAD ADDRESS uint16_t newAddress; newAddress = getch(); 7e7c: 99 d0 rcall .+306 ; 0x7fb0 newAddress = (newAddress & 0xff) | (getch() << 8); 7e7e: 08 2f mov r16, r24 7e80: 10 e0 ldi r17, 0x00 ; 0 7e82: 96 d0 rcall .+300 ; 0x7fb0 7e84: 90 e0 ldi r25, 0x00 ; 0 7e86: 98 2f mov r25, r24 7e88: 88 27 eor r24, r24 7e8a: 80 2b or r24, r16 7e8c: 91 2b or r25, r17 #ifdef RAMPZ // Transfer top bit to RAMPZ RAMPZ = (newAddress & 0x8000) ? 1 : 0; #endif newAddress += newAddress; // Convert from word address to byte address 7e8e: 88 0f add r24, r24 7e90: 99 1f adc r25, r25 address = newAddress; 7e92: 90 93 01 02 sts 0x0201, r25 7e96: 80 93 00 02 sts 0x0200, r24 7e9a: 7e c0 rjmp .+252 ; 0x7f98 verifySpace(); } else if(ch == STK_UNIVERSAL) { 7e9c: 86 35 cpi r24, 0x56 ; 86 7e9e: 29 f4 brne .+10 ; 0x7eaa // UNIVERSAL command is ignored getNch(4); 7ea0: 84 e0 ldi r24, 0x04 ; 4 7ea2: a4 d0 rcall .+328 ; 0x7fec putch(0x00); 7ea4: 80 e0 ldi r24, 0x00 ; 0 7ea6: 7c d0 rcall .+248 ; 0x7fa0 7ea8: 78 c0 rjmp .+240 ; 0x7f9a } /* Write memory, length is big endian and is in bytes */ else if(ch == STK_PROG_PAGE) { 7eaa: 84 36 cpi r24, 0x64 ; 100 7eac: 09 f0 breq .+2 ; 0x7eb0 7eae: 4e c0 rjmp .+156 ; 0x7f4c // PROGRAM PAGE - we support flash programming only, not EEPROM uint8_t *bufPtr; uint16_t addrPtr; getLen(); 7eb0: 87 d0 rcall .+270 ; 0x7fc0 // If we are in RWW section, immediately start page erase if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); 7eb2: e0 91 00 02 lds r30, 0x0200 7eb6: f0 91 01 02 lds r31, 0x0201 7eba: 80 e7 ldi r24, 0x70 ; 112 7ebc: e0 30 cpi r30, 0x00 ; 0 7ebe: f8 07 cpc r31, r24 7ec0: 18 f4 brcc .+6 ; 0x7ec8 7ec2: 83 e0 ldi r24, 0x03 ; 3 7ec4: 87 bf out 0x37, r24 ; 55 7ec6: e8 95 spm 7ec8: c0 e0 ldi r28, 0x00 ; 0 7eca: d1 e0 ldi r29, 0x01 ; 1 // While that is going on, read in page contents bufPtr = buff; do *bufPtr++ = getch(); 7ecc: 71 d0 rcall .+226 ; 0x7fb0 7ece: 89 93 st Y+, r24 while (--length); 7ed0: 80 91 02 02 lds r24, 0x0202 7ed4: 81 50 subi r24, 0x01 ; 1 7ed6: 80 93 02 02 sts 0x0202, r24 7eda: 88 23 and r24, r24 7edc: b9 f7 brne .-18 ; 0x7ecc // If we are in NRWW section, page erase has to be delayed until now. // Todo: Take RAMPZ into account if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address); 7ede: e0 91 00 02 lds r30, 0x0200 7ee2: f0 91 01 02 lds r31, 0x0201 7ee6: 80 e7 ldi r24, 0x70 ; 112 7ee8: e0 30 cpi r30, 0x00 ; 0 7eea: f8 07 cpc r31, r24 7eec: 18 f0 brcs .+6 ; 0x7ef4 7eee: 83 e0 ldi r24, 0x03 ; 3 7ef0: 87 bf out 0x37, r24 ; 55 7ef2: e8 95 spm // Read command terminator, start reply verifySpace(); 7ef4: 75 d0 rcall .+234 ; 0x7fe0 // If only a partial page is to be programmed, the erase might not be complete. // So check that here boot_spm_busy_wait(); 7ef6: 07 b6 in r0, 0x37 ; 55 7ef8: 00 fc sbrc r0, 0 7efa: fd cf rjmp .-6 ; 0x7ef6 } #endif // Copy buffer into programming buffer bufPtr = buff; addrPtr = (uint16_t)(void*)address; 7efc: 40 91 00 02 lds r20, 0x0200 7f00: 50 91 01 02 lds r21, 0x0201 7f04: a0 e0 ldi r26, 0x00 ; 0 7f06: b1 e0 ldi r27, 0x01 ; 1 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; 7f08: 2c 91 ld r18, X 7f0a: 30 e0 ldi r19, 0x00 ; 0 a |= (*bufPtr++) << 8; 7f0c: 11 96 adiw r26, 0x01 ; 1 7f0e: 8c 91 ld r24, X 7f10: 11 97 sbiw r26, 0x01 ; 1 7f12: 90 e0 ldi r25, 0x00 ; 0 7f14: 98 2f mov r25, r24 7f16: 88 27 eor r24, r24 7f18: 82 2b or r24, r18 7f1a: 93 2b or r25, r19 #define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4)) #define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6)) #endif /* main program starts here */ int main(void) { 7f1c: 12 96 adiw r26, 0x02 ; 2 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; a |= (*bufPtr++) << 8; __boot_page_fill_short((uint16_t)(void*)addrPtr,a); 7f1e: fa 01 movw r30, r20 7f20: 0c 01 movw r0, r24 7f22: d7 be out 0x37, r13 ; 55 7f24: e8 95 spm 7f26: 11 24 eor r1, r1 addrPtr += 2; 7f28: 4e 5f subi r20, 0xFE ; 254 7f2a: 5f 4f sbci r21, 0xFF ; 255 } while (--ch); 7f2c: f1 e0 ldi r31, 0x01 ; 1 7f2e: a0 38 cpi r26, 0x80 ; 128 7f30: bf 07 cpc r27, r31 7f32: 51 f7 brne .-44 ; 0x7f08 // Write from programming buffer __boot_page_write_short((uint16_t)(void*)address); 7f34: e0 91 00 02 lds r30, 0x0200 7f38: f0 91 01 02 lds r31, 0x0201 7f3c: e7 be out 0x37, r14 ; 55 7f3e: e8 95 spm boot_spm_busy_wait(); 7f40: 07 b6 in r0, 0x37 ; 55 7f42: 00 fc sbrc r0, 0 7f44: fd cf rjmp .-6 ; 0x7f40 #if defined(RWWSRE) // Reenable read access to flash boot_rww_enable(); 7f46: f7 be out 0x37, r15 ; 55 7f48: e8 95 spm 7f4a: 27 c0 rjmp .+78 ; 0x7f9a #endif } /* Read memory block mode, length is big endian. */ else if(ch == STK_READ_PAGE) { 7f4c: 84 37 cpi r24, 0x74 ; 116 7f4e: b9 f4 brne .+46 ; 0x7f7e // READ PAGE - we only read flash getLen(); 7f50: 37 d0 rcall .+110 ; 0x7fc0 verifySpace(); 7f52: 46 d0 rcall .+140 ; 0x7fe0 putch(result); address++; } while (--length); #else do putch(pgm_read_byte_near(address++)); 7f54: e0 91 00 02 lds r30, 0x0200 7f58: f0 91 01 02 lds r31, 0x0201 7f5c: 31 96 adiw r30, 0x01 ; 1 7f5e: f0 93 01 02 sts 0x0201, r31 7f62: e0 93 00 02 sts 0x0200, r30 7f66: 31 97 sbiw r30, 0x01 ; 1 7f68: e4 91 lpm r30, Z+ 7f6a: 8e 2f mov r24, r30 7f6c: 19 d0 rcall .+50 ; 0x7fa0 while (--length); 7f6e: 80 91 02 02 lds r24, 0x0202 7f72: 81 50 subi r24, 0x01 ; 1 7f74: 80 93 02 02 sts 0x0202, r24 7f78: 88 23 and r24, r24 7f7a: 61 f7 brne .-40 ; 0x7f54 7f7c: 0e c0 rjmp .+28 ; 0x7f9a #endif #endif } /* Get device signature bytes */ else if(ch == STK_READ_SIGN) { 7f7e: 85 37 cpi r24, 0x75 ; 117 7f80: 39 f4 brne .+14 ; 0x7f90 // READ SIGN - return what Avrdude wants to hear verifySpace(); 7f82: 2e d0 rcall .+92 ; 0x7fe0 putch(SIGNATURE_0); 7f84: 8e e1 ldi r24, 0x1E ; 30 7f86: 0c d0 rcall .+24 ; 0x7fa0 putch(SIGNATURE_1); 7f88: 85 e9 ldi r24, 0x95 ; 149 7f8a: 0a d0 rcall .+20 ; 0x7fa0 putch(SIGNATURE_2); 7f8c: 8f e0 ldi r24, 0x0F ; 15 7f8e: 8b cf rjmp .-234 ; 0x7ea6 } else if (ch == 'Q') { 7f90: 81 35 cpi r24, 0x51 ; 81 7f92: 11 f4 brne .+4 ; 0x7f98 // Adaboot no-wait mod watchdogConfig(WATCHDOG_16MS); 7f94: 88 e0 ldi r24, 0x08 ; 8 7f96: 19 d0 rcall .+50 ; 0x7fca verifySpace(); } else { // This covers the response to commands like STK_ENTER_PROGMODE verifySpace(); 7f98: 23 d0 rcall .+70 ; 0x7fe0 } putch(STK_OK); 7f9a: 80 e1 ldi r24, 0x10 ; 16 7f9c: 01 d0 rcall .+2 ; 0x7fa0 7f9e: 5c cf rjmp .-328 ; 0x7e58 00007fa0 : } } void putch(char ch) { 7fa0: 98 2f mov r25, r24 #ifndef SOFT_UART while (!(UCSR0A & _BV(UDRE0))); 7fa2: 80 91 c0 00 lds r24, 0x00C0 7fa6: 85 ff sbrs r24, 5 7fa8: fc cf rjmp .-8 ; 0x7fa2 UDR0 = ch; 7faa: 90 93 c6 00 sts 0x00C6, r25 [uartBit] "I" (UART_TX_BIT) : "r25" ); #endif } 7fae: 08 95 ret 00007fb0 : return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 7fb0: a8 95 wdr [uartBit] "I" (UART_RX_BIT) : "r25" ); #else while(!(UCSR0A & _BV(RXC0))); 7fb2: 80 91 c0 00 lds r24, 0x00C0 7fb6: 87 ff sbrs r24, 7 7fb8: fc cf rjmp .-8 ; 0x7fb2 ch = UDR0; 7fba: 80 91 c6 00 lds r24, 0x00C6 LED_PIN |= _BV(LED); #endif #endif return ch; } 7fbe: 08 95 ret 00007fc0 : } while (--count); } #endif uint8_t getLen() { getch(); 7fc0: f7 df rcall .-18 ; 0x7fb0 length = getch(); 7fc2: f6 df rcall .-20 ; 0x7fb0 7fc4: 80 93 02 02 sts 0x0202, r24 return getch(); } 7fc8: f3 cf rjmp .-26 ; 0x7fb0 00007fca : "wdr\n" ); } void watchdogConfig(uint8_t x) { WDTCSR = _BV(WDCE) | _BV(WDE); 7fca: e0 e6 ldi r30, 0x60 ; 96 7fcc: f0 e0 ldi r31, 0x00 ; 0 7fce: 98 e1 ldi r25, 0x18 ; 24 7fd0: 90 83 st Z, r25 WDTCSR = x; 7fd2: 80 83 st Z, r24 } 7fd4: 08 95 ret 00007fd6 : void appStart() { watchdogConfig(WATCHDOG_OFF); 7fd6: 80 e0 ldi r24, 0x00 ; 0 7fd8: f8 df rcall .-16 ; 0x7fca __asm__ __volatile__ ( 7fda: ee 27 eor r30, r30 7fdc: ff 27 eor r31, r31 7fde: 09 94 ijmp 00007fe0 : do getch(); while (--count); verifySpace(); } void verifySpace() { if (getch() != CRC_EOP) appStart(); 7fe0: e7 df rcall .-50 ; 0x7fb0 7fe2: 80 32 cpi r24, 0x20 ; 32 7fe4: 09 f0 breq .+2 ; 0x7fe8 7fe6: f7 df rcall .-18 ; 0x7fd6 putch(STK_INSYNC); 7fe8: 84 e1 ldi r24, 0x14 ; 20 } 7fea: da cf rjmp .-76 ; 0x7fa0 00007fec : ::[count] "M" (UART_B_VALUE) ); } #endif void getNch(uint8_t count) { 7fec: 1f 93 push r17 7fee: 18 2f mov r17, r24 do getch(); while (--count); 7ff0: df df rcall .-66 ; 0x7fb0 7ff2: 11 50 subi r17, 0x01 ; 1 7ff4: e9 f7 brne .-6 ; 0x7ff0 verifySpace(); 7ff6: f4 df rcall .-24 ; 0x7fe0 } 7ff8: 1f 91 pop r17 7ffa: 08 95 ret