/* LUFA Library Copyright (C) Dean Camera, 2011. dean [at] fourwalledcubicle [dot] com www.lufa-lib.org */ /* Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com) Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the name of the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The author disclaim all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. */ /** \file * * Main source file for the CDC class bootloader. This file contains the complete bootloader logic. */ #define INCLUDE_FROM_CATERINA_C #include "Caterina.h" /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some * operating systems will not open the port unless the settings can be set successfully. */ static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0, .CharFormat = CDC_LINEENCODING_OneStopBit, .ParityType = CDC_PARITY_None, .DataBits = 8 }; /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host, * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued * command.) */ static uint32_t CurrAddress; /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite * loop until the AVR restarts and the application runs. */ static bool RunBootloader = true; /* Pulse generation counters to keep track of the time remaining for each pulse type */ #define TX_RX_LED_PULSE_PERIOD 100 uint16_t TxLEDPulse = 0; // time remaining for Tx LED pulse uint16_t RxLEDPulse = 0; // time remaining for Rx LED pulse /* Bootloader timeout timer */ uint16_t Timeout = 0; void StartSketch(void) { cli(); /* Undo TIMER1 setup and clear the count before running the sketch */ TIMSK1 = 0; TCCR1B = 0; TCNT1H = 0; // 16-bit write to TCNT1 requires high byte be written first TCNT1L = 0; /* Relocate the interrupt vector table to the application section */ MCUCR = (1 << IVCE); MCUCR = 0; L_LED_OFF(); TX_LED_OFF(); RX_LED_OFF(); /* jump to beginning of application space */ __asm__ volatile("jmp 0x0000"); } /* Breathing animation on L LED indicates bootloader is running */ uint16_t LLEDPulse; void LEDPulse(void) { LLEDPulse++; uint8_t p = LLEDPulse >> 8; if (p > 127) p = 254-p; p += p; if (((uint8_t)LLEDPulse) > p) L_LED_OFF(); else L_LED_ON(); } /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start * the loaded application code. */ int main(void) { /* Watchdog may be configured with a 15 ms period so must disable it before doing anything else */ wdt_disable(); /* Check the reason for the reset and act accordingly */ uint8_t mcusr_state = MCUSR; // store the initial state of the Status register MCUSR = 0; // clear all reset flags // After a power-on reset skip the bootloader and jump straight to sketch // if one exists. if (mcusr_state & (1< 16000 && pgm_read_word(0) != 0xFFFF) RunBootloader = false; LEDPulse(); } /* Disconnect from the host - USB interface will be reset later along with the AVR */ USB_Detach(); /* Jump to beginning of application space to run the sketch - do not reset */ StartSketch(); } /** Configures all hardware required for the bootloader. */ void SetupHardware(void) { /* Disable watchdog if enabled by bootloader/fuses */ MCUSR &= ~(1 << WDRF); wdt_disable(); /* Disable clock division */ clock_prescale_set(clock_div_1); /* Relocate the interrupt vector table to the bootloader section */ MCUCR = (1 << IVCE); MCUCR = (1 << IVSEL); LED_SETUP(); CPU_PRESCALE(0); L_LED_OFF(); TX_LED_OFF(); RX_LED_OFF(); /* Initialize TIMER1 to handle bootloader timeout and LED tasks. * With 16 MHz clock and 1/64 prescaler, timer 1 is clocked at 250 kHz * Our chosen compare match generates an interrupt every 1 ms. * This interrupt is disabled selectively when doing memory reading, erasing, * or writing since SPM has tight timing requirements. */ OCR1AH = 0; OCR1AL = 250; TIMSK1 = (1 << OCIE1A); // enable timer 1 output compare A match interrupt TCCR1B = ((1 << CS11) | (1 << CS10)); // 1/64 prescaler on timer 1 input /* Initialize USB Subsystem */ USB_Init(); } //uint16_t ctr = 0; ISR(TIMER1_COMPA_vect, ISR_BLOCK) { /* Reset counter */ TCNT1H = 0; TCNT1L = 0; /* Check whether the TX or RX LED one-shot period has elapsed. if so, turn off the LED */ if (TxLEDPulse && !(--TxLEDPulse)) TX_LED_OFF(); if (RxLEDPulse && !(--RxLEDPulse)) RX_LED_OFF(); if (pgm_read_word(0) != 0xFFFF) Timeout++; } /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready * to relay data to and from the attached USB host. */ void EVENT_USB_Device_ConfigurationChanged(void) { /* Setup CDC Notification, Rx and Tx Endpoints */ Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT, ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE, ENDPOINT_BANK_SINGLE); Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK, ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE, ENDPOINT_BANK_SINGLE); Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK, ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE, ENDPOINT_BANK_SINGLE); } /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to * the device from the USB host before passing along unhandled control requests to the library for processing * internally. */ void EVENT_USB_Device_ControlRequest(void) { /* Ignore any requests that aren't directed to the CDC interface */ if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) != (REQTYPE_CLASS | REQREC_INTERFACE)) { return; } /* Process CDC specific control requests */ switch (USB_ControlRequest.bRequest) { case CDC_REQ_GetLineEncoding: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE)) { Endpoint_ClearSETUP(); /* Write the line coding data to the control endpoint */ Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t)); Endpoint_ClearOUT(); } break; case CDC_REQ_SetLineEncoding: if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE)) { Endpoint_ClearSETUP(); /* Read the line coding data in from the host into the global struct */ Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t)); Endpoint_ClearIN(); } break; } } #if !defined(NO_BLOCK_SUPPORT) /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending * on the AVR910 protocol command issued. * * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform */ static void ReadWriteMemoryBlock(const uint8_t Command) { uint16_t BlockSize; char MemoryType; bool HighByte = false; uint8_t LowByte = 0; BlockSize = (FetchNextCommandByte() << 8); BlockSize |= FetchNextCommandByte(); MemoryType = FetchNextCommandByte(); if ((MemoryType != 'E') && (MemoryType != 'F')) { /* Send error byte back to the host */ WriteNextResponseByte('?'); return; } /* Disable timer 1 interrupt - can't afford to process nonessential interrupts * while doing SPM tasks */ TIMSK1 = 0; /* Check if command is to read memory */ if (Command == 'g') { /* Re-enable RWW section */ boot_rww_enable(); while (BlockSize--) { if (MemoryType == 'F') { /* Read the next FLASH byte from the current FLASH page */ #if (FLASHEND > 0xFFFF) WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte)); #else WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte)); #endif /* If both bytes in current word have been read, increment the address counter */ if (HighByte) CurrAddress += 2; HighByte = !HighByte; } else { /* Read the next EEPROM byte into the endpoint */ WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1))); /* Increment the address counter after use */ CurrAddress += 2; } } } else { uint32_t PageStartAddress = CurrAddress; if (MemoryType == 'F') { boot_page_erase(PageStartAddress); boot_spm_busy_wait(); } while (BlockSize--) { if (MemoryType == 'F') { /* If both bytes in current word have been written, increment the address counter */ if (HighByte) { /* Write the next FLASH word to the current FLASH page */ boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte)); /* Increment the address counter after use */ CurrAddress += 2; } else { LowByte = FetchNextCommandByte(); } HighByte = !HighByte; } else { /* Write the next EEPROM byte from the endpoint */ eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte()); /* Increment the address counter after use */ CurrAddress += 2; } } /* If in FLASH programming mode, commit the page after writing */ if (MemoryType == 'F') { /* Commit the flash page to memory */ boot_page_write(PageStartAddress); /* Wait until write operation has completed */ boot_spm_busy_wait(); } /* Send response byte back to the host */ WriteNextResponseByte('\r'); } /* Re-enable timer 1 interrupt disabled earlier in this routine */ TIMSK1 = (1 << OCIE1A); } #endif /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed * to allow reception of the next data packet from the host. * * \return Next received byte from the host in the CDC data OUT endpoint */ static uint8_t FetchNextCommandByte(void) { /* Select the OUT endpoint so that the next data byte can be read */ Endpoint_SelectEndpoint(CDC_RX_EPNUM); /* If OUT endpoint empty, clear it and wait for the next packet from the host */ while (!(Endpoint_IsReadWriteAllowed())) { Endpoint_ClearOUT(); while (!(Endpoint_IsOUTReceived())) { if (USB_DeviceState == DEVICE_STATE_Unattached) return 0; } } /* Fetch the next byte from the OUT endpoint */ return Endpoint_Read_8(); } /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the * bank when full ready for the next byte in the packet to the host. * * \param[in] Response Next response byte to send to the host */ static void WriteNextResponseByte(const uint8_t Response) { /* Select the IN endpoint so that the next data byte can be written */ Endpoint_SelectEndpoint(CDC_TX_EPNUM); /* If IN endpoint full, clear it and wait until ready for the next packet to the host */ if (!(Endpoint_IsReadWriteAllowed())) { Endpoint_ClearIN(); while (!(Endpoint_IsINReady())) { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } } /* Write the next byte to the IN endpoint */ Endpoint_Write_8(Response); TX_LED_ON(); TxLEDPulse = TX_RX_LED_PULSE_PERIOD; } #define STK_OK 0x10 #define STK_INSYNC 0x14 // ' ' #define CRC_EOP 0x20 // 'SPACE' #define STK_GET_SYNC 0x30 // '0' #define STK_GET_PARAMETER 0x41 // 'A' #define STK_SET_DEVICE 0x42 // 'B' #define STK_SET_DEVICE_EXT 0x45 // 'E' #define STK_LOAD_ADDRESS 0x55 // 'U' #define STK_UNIVERSAL 0x56 // 'V' #define STK_PROG_PAGE 0x64 // 'd' #define STK_READ_PAGE 0x74 // 't' #define STK_READ_SIGN 0x75 // 'u' /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions * and send the appropriate response back to the host. */ void CDC_Task(void) { /* Select the OUT endpoint */ Endpoint_SelectEndpoint(CDC_RX_EPNUM); /* Check if endpoint has a command in it sent from the host */ if (!(Endpoint_IsOUTReceived())) return; RX_LED_ON(); RxLEDPulse = TX_RX_LED_PULSE_PERIOD; /* Read in the bootloader command (first byte sent from host) */ uint8_t Command = FetchNextCommandByte(); if (Command == 'E') { RunBootloader = false; // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 'T') { FetchNextCommandByte(); // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if ((Command == 'L') || (Command == 'P')) { // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 't') { // Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader WriteNextResponseByte(0x44); WriteNextResponseByte(0x00); } else if (Command == 'a') { // Indicate auto-address increment is supported WriteNextResponseByte('Y'); } else if (Command == 'A') { // Set the current address to that given by the host CurrAddress = (FetchNextCommandByte() << 9); CurrAddress |= (FetchNextCommandByte() << 1); // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 'p') { // Indicate serial programmer back to the host WriteNextResponseByte('S'); } else if (Command == 'S') { // Write the 7-byte software identifier to the endpoint for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++) WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]); } else if (Command == 'V') { WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR); WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR); } else if (Command == 's') { WriteNextResponseByte(AVR_SIGNATURE_3); WriteNextResponseByte(AVR_SIGNATURE_2); WriteNextResponseByte(AVR_SIGNATURE_1); } else if (Command == 'e') { // Clear the application section of flash for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE) { boot_page_erase(CurrFlashAddress); boot_spm_busy_wait(); boot_page_write(CurrFlashAddress); boot_spm_busy_wait(); } // Send confirmation byte back to the host WriteNextResponseByte('\r'); } #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT) else if (Command == 'l') { // Set the lock bits to those given by the host boot_lock_bits_set(FetchNextCommandByte()); // Send confirmation byte back to the host WriteNextResponseByte('\r'); } #endif else if (Command == 'r') { WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS)); } else if (Command == 'F') { WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS)); } else if (Command == 'N') { WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS)); } else if (Command == 'Q') { WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS)); } #if !defined(NO_BLOCK_SUPPORT) else if (Command == 'b') { WriteNextResponseByte('Y'); // Send block size to the host WriteNextResponseByte(SPM_PAGESIZE >> 8); WriteNextResponseByte(SPM_PAGESIZE & 0xFF); } else if ((Command == 'B') || (Command == 'g')) { Timeout = 0; // Delegate the block write/read to a separate function for clarity ReadWriteMemoryBlock(Command); } #endif #if !defined(NO_FLASH_BYTE_SUPPORT) else if (Command == 'C') { // Write the high byte to the current flash page boot_page_fill(CurrAddress, FetchNextCommandByte()); // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 'c') { // Write the low byte to the current flash page boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte()); // Increment the address CurrAddress += 2; // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 'm') { // Commit the flash page to memory boot_page_write(CurrAddress); // Wait until write operation has completed boot_spm_busy_wait(); // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 'R') { #if (FLASHEND > 0xFFFF) uint16_t ProgramWord = pgm_read_word_far(CurrAddress); #else uint16_t ProgramWord = pgm_read_word(CurrAddress); #endif WriteNextResponseByte(ProgramWord >> 8); WriteNextResponseByte(ProgramWord & 0xFF); } #endif #if !defined(NO_EEPROM_BYTE_SUPPORT) else if (Command == 'D') { // Read the byte from the endpoint and write it to the EEPROM eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte()); // Increment the address after use CurrAddress += 2; // Send confirmation byte back to the host WriteNextResponseByte('\r'); } else if (Command == 'd') { // Read the EEPROM byte and write it to the endpoint WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)))); // Increment the address after use CurrAddress += 2; } #endif else if (Command != 27) { // Unknown (non-sync) command, return fail code WriteNextResponseByte('?'); } /* Select the IN endpoint */ Endpoint_SelectEndpoint(CDC_TX_EPNUM); /* Remember if the endpoint is completely full before clearing it */ bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); /* Send the endpoint data to the host */ Endpoint_ClearIN(); /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */ if (IsEndpointFull) { while (!(Endpoint_IsINReady())) { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } Endpoint_ClearIN(); } /* Wait until the data has been sent to the host */ while (!(Endpoint_IsINReady())) { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } /* Select the OUT endpoint */ Endpoint_SelectEndpoint(CDC_RX_EPNUM); /* Acknowledge the command from the host */ Endpoint_ClearOUT(); }